vllm/vllm/v1/engine/processor.py
Cyrus Leung b539222d4e
[V1] Remove input cache client (#14864)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Roger Wang <ywang@roblox.com>
Co-authored-by: Roger Wang <ywang@roblox.com>
2025-03-16 23:42:06 -07:00

312 lines
13 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import time
from collections.abc import Mapping
from typing import Optional, Union
import vllm.platforms
from vllm.config import VllmConfig
from vllm.inputs import (INPUT_REGISTRY, InputRegistry, ProcessorInputs,
PromptType, SingletonInputsAdapter)
from vllm.inputs.parse import is_encoder_decoder_inputs
from vllm.inputs.preprocess import InputPreprocessor
from vllm.lora.request import LoRARequest
from vllm.multimodal import (MULTIMODAL_REGISTRY, MultiModalKwargs,
MultiModalRegistry)
from vllm.multimodal.inputs import PlaceholderRange
from vllm.multimodal.utils import merge_and_sort_multimodal_metadata
from vllm.pooling_params import PoolingParams
from vllm.prompt_adapter.request import PromptAdapterRequest
from vllm.sampling_params import SamplingParams
from vllm.transformers_utils.tokenizer_group import BaseTokenizerGroup
from vllm.v1.engine import EngineCoreRequest
from vllm.v1.structured_output.utils import validate_structured_output_request
class Processor:
def __init__(
self,
vllm_config: VllmConfig,
tokenizer: BaseTokenizerGroup,
input_registry: InputRegistry = INPUT_REGISTRY,
mm_registry: MultiModalRegistry = MULTIMODAL_REGISTRY,
):
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
self.lora_config = vllm_config.lora_config
self.decoding_config = vllm_config.decoding_config
self.tokenizer = tokenizer
self.generation_config_fields = (
self.model_config.try_get_generation_config())
self.input_preprocessor = InputPreprocessor(self.model_config,
self.tokenizer,
mm_registry)
# Multi-modal hasher (for images)
self.use_hash = (
not self.model_config.disable_mm_preprocessor_cache) or \
self.cache_config.enable_prefix_caching
def _validate_logprobs(
self,
params: SamplingParams,
) -> None:
max_logprobs = self.model_config.max_logprobs
# Validate sample logprobs.
if params.logprobs and params.logprobs > max_logprobs:
raise ValueError(
f"Requested sample logprobs of {params.logprobs}, "
f"which is greater than max allowed: {max_logprobs}")
# Validate prompt logprobs.
if params.prompt_logprobs and params.prompt_logprobs > max_logprobs:
raise ValueError(
f"Requested prompt logprobs of {params.prompt_logprobs}, "
f"which is greater than max allowed: {max_logprobs}")
def _validate_sampling_params(
self,
params: SamplingParams,
) -> None:
self._validate_structured_output(params)
if params.allowed_token_ids is None:
return
if not params.allowed_token_ids:
raise ValueError("allowed_token_ids is not None and empty!")
vocab_size = self.model_config.get_vocab_size()
if not all(0 <= tid < vocab_size for tid in params.allowed_token_ids):
raise ValueError(
"allowed_token_ids contains out-of-vocab token id!")
def _validate_supported_sampling_params(
self,
params: SamplingParams,
) -> None:
# Best of not yet supported.
if params.best_of is not None and params.best_of > 1:
raise ValueError("vLLM V1 does not yet support best_of.")
# Logits processors not supported.
if params.logits_processors:
raise ValueError("vLLM V1 does not support per request "
"user provided logits processors.")
def _validate_params(
self,
params: Union[SamplingParams, PoolingParams],
):
"""
Validate supported SamplingParam.
Should raise ValueError if unsupported for API Server.
"""
if not isinstance(params, SamplingParams):
raise ValueError("V1 does not yet support Pooling models.")
self._validate_logprobs(params)
self._validate_sampling_params(params)
self._validate_supported_sampling_params(params)
def _validate_lora(self, lora_request: Optional[LoRARequest]) -> None:
if lora_request is not None and not self.lora_config:
raise ValueError(f"Got lora_request {lora_request} but LoRA is "
"not enabled!")
def _validate_structured_output(self, params: SamplingParams) -> None:
if not params.guided_decoding or not self.decoding_config:
return
if self.decoding_config.guided_decoding_backend != "xgrammar":
raise ValueError(
"Only xgrammar structured output is supported in V1.")
if (params.guided_decoding.backend
and params.guided_decoding.backend != 'xgrammar'):
raise ValueError(
"Only xgrammar structured output is supported in V1.")
if self.vllm_config.speculative_config:
raise ValueError("Structured output is not supported with "
"speculative decoding.")
if vllm.platforms.current_platform.is_tpu():
raise ValueError("Structured output is not supported on TPU.")
validate_structured_output_request(params)
def process_inputs(
self,
request_id: str,
prompt: PromptType,
params: Union[SamplingParams, PoolingParams],
arrival_time: Optional[float] = None,
lora_request: Optional[LoRARequest] = None,
trace_headers: Optional[Mapping[str, str]] = None,
prompt_adapter_request: Optional[PromptAdapterRequest] = None,
priority: int = 0,
) -> EngineCoreRequest:
# TODO(woosuk): Support pooling models.
# TODO(woosuk): Support encoder-decoder models.
self._validate_lora(lora_request)
self._validate_params(params)
if priority != 0:
raise ValueError("V1 does not support priority yet.")
if trace_headers is not None:
raise ValueError("V1 does not support tracing yet.")
if prompt_adapter_request is not None:
raise ValueError("V1 does not support prompt_adapter_request.")
if arrival_time is None:
arrival_time = time.time()
# Process inputs, which includes:
# 1. Tokenize text prompt, with LoRA request if one exists.
# 2. For multimodal models with a merged preprocessor, preprocess
# multimodal data and expand prompt token ids accordingly.
# 3. Apply prompt adapter to prompt token ids if one exists.
processed_inputs: ProcessorInputs = self.input_preprocessor.preprocess(
prompt,
request_id=request_id,
lora_request=lora_request,
prompt_adapter_request=prompt_adapter_request,
return_mm_hashes=self.use_hash,
)
eos_token_id = self.input_preprocessor.get_eos_token_id(lora_request)
self._validate_model_inputs(processed_inputs, lora_request)
if is_encoder_decoder_inputs(processed_inputs):
decoder_inputs = SingletonInputsAdapter(
processed_inputs["decoder"])
encoder_inputs = SingletonInputsAdapter(
processed_inputs["encoder"])
else:
decoder_inputs = SingletonInputsAdapter(processed_inputs)
encoder_inputs = None
# TODO: Impl encoder-decoder
if encoder_inputs is not None:
raise NotImplementedError
assert isinstance(params, SamplingParams)
# TODO: can we avoid cloning here in multiproc case?
sampling_params = params.clone()
# If unset max tokens, then generate up to the max_model_len.
if sampling_params.max_tokens is None:
sampling_params.max_tokens = (self.model_config.max_model_len -
len(decoder_inputs.prompt_token_ids))
sampling_params.update_from_generation_config(
self.generation_config_fields, eos_token_id)
sampling_params.update_from_tokenizer(
self.tokenizer.get_lora_tokenizer(lora_request))
# Multimodal related.
sorted_mm_inputs: Optional[list[MultiModalKwargs]] = None
sorted_mm_positions: Optional[list[PlaceholderRange]] = None
sorted_mm_hashes: Optional[list[str]] = None
if (decoder_mm_inputs := decoder_inputs.multi_modal_data):
assert isinstance(decoder_mm_inputs, MultiModalKwargs)
# The output of merged multi-modal processor (`decoder_mm_inputs`)
# contains the kwargs for all items from all modalities.
# This code separates them so that there is one set of kwargs
# per item per modality.
individual_mm_inputs = [
MultiModalKwargs.from_items([item])
for modality in decoder_mm_inputs.modalities
for item in decoder_mm_inputs.get_items(modality)
]
# Merge and flatten multimodal placeholders, hashes and inputs
# from dictionaries to lists, and sort them by each item's position
# in the input sequence.
# NOTE: interleaved modalities are not supported.
(
sorted_modalities,
sorted_mm_positions,
sorted_mm_hashes,
) = merge_and_sort_multimodal_metadata(
decoder_inputs.multi_modal_placeholders,
decoder_inputs.multi_modal_hashes if self.use_hash else None,
)
# NOTE: Sort multimodal inputs/kwargs ONLY IF there are multiple
# modalities involved.
if len(sorted_modalities) > 1:
modality_order_dict = {
modality: order
for order, modality in enumerate(sorted_modalities)
}
# Sanity check to make sure each multimodal input has only one
# modality key.
for mm_input in individual_mm_inputs:
assert len(mm_input.modalities) == 1
# Sort MultiModalKwargs to match sorted_mm_positions
sorted_mm_inputs = sorted(
individual_mm_inputs,
key=lambda mm_input: modality_order_dict[list(
mm_input.modalities)[0]])
else:
sorted_mm_inputs = individual_mm_inputs
return EngineCoreRequest(
request_id=request_id,
prompt=decoder_inputs.prompt,
prompt_token_ids=decoder_inputs.prompt_token_ids,
mm_inputs=sorted_mm_inputs,
mm_hashes=sorted_mm_hashes,
mm_placeholders=sorted_mm_positions,
sampling_params=sampling_params,
eos_token_id=eos_token_id,
arrival_time=arrival_time,
lora_request=lora_request,
)
def _validate_model_inputs(self,
inputs: ProcessorInputs,
lora_request: Optional[LoRARequest] = None):
if is_encoder_decoder_inputs(inputs):
# For encoder-decoder multimodal models, the max_prompt_len
# restricts the decoder prompt length
prompt_inputs = inputs["decoder" if self.model_config.
is_multimodal_model else "encoder"]
else:
prompt_inputs = inputs
prompt_ids = SingletonInputsAdapter(prompt_inputs).prompt_token_ids
if prompt_ids is None or len(prompt_ids) == 0:
raise ValueError("Prompt cannot be empty")
max_input_id = max(prompt_ids)
max_allowed = self.tokenizer.get_lora_tokenizer(
lora_request).max_token_id
if max_input_id > max_allowed:
raise ValueError(
"Token id {} is out of vocabulary".format(max_input_id))
if len(prompt_ids) >= self.model_config.max_model_len:
raise ValueError(
f"Prompt length of {len(prompt_ids)} is longer than the "
f"maximum model length of {self.model_config.max_model_len}.")
if self.model_config.is_multimodal_model:
max_prompt_len = self.model_config.max_model_len
if len(prompt_ids) > max_prompt_len:
raise ValueError(
f"The prompt (total length {len(prompt_ids)}) is too long "
f"to fit into the model (context length {max_prompt_len}). "
"Make sure that `max_model_len` is no smaller than the "
"number of text tokens plus multimodal tokens. For image "
"inputs, the number of image tokens depends on the number "
"of images, and possibly their aspect ratios as well.")
# TODO: Find out how many placeholder tokens are there so we can
# check that chunked prefill does not truncate them
# max_batch_len = self.scheduler_config.max_num_batched_tokens