vllm/tests/kernels/quantization/test_flashinfer_nvfp4_scaled_mm.py
Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

140 lines
4.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from nvfp4_utils import (
FLOAT4_E2M1_MAX,
FLOAT8_E4M3_MAX,
convert_swizzled_to_linear,
dequantize_nvfp4_to_dtype,
)
from vllm import _custom_ops as ops
from vllm.platforms import current_platform
from vllm.utils.flashinfer import flashinfer_scaled_fp4_mm
if not current_platform.has_device_capability(100):
pytest.skip(
reason="Nvfp4 Requires compute capability of 10 or above.",
allow_module_level=True,
)
DTYPES = [torch.float16, torch.bfloat16]
# m, n, k
SHAPES = [(128, 128, 64), (128, 128, 128), (256, 128, 64), (128, 256, 128)]
PAD_SHAPES = [(150, 128, 64), (128, 128, 96)]
SHAPES.extend(PAD_SHAPES)
SEEDS = [42]
CUDA_DEVICES = ["cuda:0"]
def get_ref_results(
a_fp4,
b_fp4,
a_sf,
b_sf,
a_global_scale,
b_global_scale,
m,
n,
dtype,
block_size,
device,
):
_, m_k = a_fp4.shape
_, n_k = b_fp4.shape
assert m_k == n_k
a_in_dtype = dequantize_nvfp4_to_dtype(
a_fp4, a_sf, a_global_scale, dtype=dtype, device=device, block_size=block_size
)
b_in_dtype = dequantize_nvfp4_to_dtype(
b_fp4, b_sf, b_global_scale, dtype=dtype, device=device, block_size=block_size
)
return torch.matmul(a_in_dtype, b_in_dtype.t())
@pytest.mark.parametrize("dtype", DTYPES)
@pytest.mark.parametrize("shape", SHAPES)
@pytest.mark.parametrize("seed", SEEDS)
@pytest.mark.parametrize("device", CUDA_DEVICES)
@pytest.mark.parametrize("backend", ["cutlass", "trtllm"])
@pytest.mark.parametrize("autotune", [False, True])
@torch.inference_mode()
def test_flashinfer_nvfp4_gemm(
dtype: torch.dtype,
shape: tuple[int, int, int],
seed: int,
device: str,
backend: str,
autotune: bool,
) -> None:
if backend == "trtllm" and dtype == torch.float16:
pytest.skip("Only torch.bfloat16 is supported for TRTLLM FP4 GEMM operations")
current_platform.seed_everything(seed)
m, n, packed_k = shape
k = packed_k * 2
block_size = 16
a_dtype = torch.randn((m, k), dtype=dtype, device=device)
b_dtype = torch.randn((n, k), dtype=dtype, device=device)
a_global_scale = (
(FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(a_dtype.flatten(), dim=-1)
).to(torch.float32)
b_global_scale = (
(FLOAT8_E4M3_MAX * FLOAT4_E2M1_MAX) / torch.amax(b_dtype.flatten(), dim=-1)
).to(torch.float32)
alpha = 1.0 / (a_global_scale * b_global_scale)
# ops.scaled_fp4_quant returns swizzled scales, while weights
# from checkpoints are in linear scales.
# So instead of needing to swizzle for cutlass as in modelopt.py,
# we need to unswizzle for trtllm here.
a_fp4, a_scale_interleaved = ops.scaled_fp4_quant(a_dtype, a_global_scale)
b_fp4, b_scale_interleaved = ops.scaled_fp4_quant(b_dtype, b_global_scale)
# get_ref_results unswizzles the scales internally.
expected_out = get_ref_results(
a_fp4,
b_fp4,
a_scale_interleaved,
b_scale_interleaved,
a_global_scale,
b_global_scale,
m,
n,
dtype,
block_size,
device,
)
import flashinfer
if backend == "trtllm":
epilogue_tile_m = 128
b_fp4 = flashinfer.shuffle_matrix_a(b_fp4.view(torch.uint8), epilogue_tile_m)
b_scale_interleaved = convert_swizzled_to_linear(
b_scale_interleaved, n, k, block_size
)
b_scale_interleaved = (
flashinfer.shuffle_matrix_sf_a(
b_scale_interleaved.view(torch.uint8), epilogue_tile_m
)
.reshape(b_scale_interleaved.shape)
.view(torch.float8_e4m3fn)
)
with flashinfer.autotune(autotune):
out = flashinfer_scaled_fp4_mm(
a_fp4,
b_fp4,
a_scale_interleaved,
b_scale_interleaved,
alpha,
dtype,
backend=backend,
)
torch.testing.assert_close(out, expected_out.to(dtype=dtype), atol=1e-1, rtol=1e-1)