vllm/tests/distributed/test_eplb_fused_moe_layer_dep_nvfp4.py
Andrew Briand a00d88973d
[EPLB] Support EPLB w/ NVFP4 (#29804)
Signed-off-by: Andrew Briand <abriand@nvidia.com>
Co-authored-by: Andrew Briand <abriand@nvidia.com>
2025-12-11 22:59:40 +00:00

277 lines
8.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Test that the interaction between EPLB and FusedMoE Layer is okay for DP w/ NVFP4
from dataclasses import dataclass
import pytest
import torch
from tests.kernels.moe.utils import make_test_quant_config
from vllm.config import VllmConfig, set_current_vllm_config
from vllm.distributed.eplb.rebalance_execute import rearrange_expert_weights_inplace
from vllm.distributed.parallel_state import (
ensure_model_parallel_initialized,
get_dp_group,
)
from vllm.forward_context import set_forward_context
from vllm.model_executor.layers.fused_moe.layer import FusedMoE
from vllm.model_executor.layers.quantization.modelopt import (
ModelOptNvFp4Config,
ModelOptNvFp4FusedMoE,
)
from .eplb_utils import distributed_run, set_env_vars_and_device
@dataclass
class TestConfig:
num_layers: int
num_experts: int
num_local_experts: int
num_topk: int
hidden_size: int
intermediate_size: int
num_tokens: int
def make_fused_moe_layer(
rank: int,
layer_idx: int,
test_config: TestConfig,
) -> FusedMoE:
quant_config = None
device = torch.device(f"cuda:{rank}")
quant_config = ModelOptNvFp4Config(
is_checkpoint_nvfp4_serialized=True,
kv_cache_quant_algo=None,
exclude_modules=[],
)
fml = FusedMoE(
num_experts=test_config.num_experts,
top_k=test_config.num_topk,
hidden_size=test_config.hidden_size,
intermediate_size=test_config.intermediate_size,
prefix=f"dummy_layer_{layer_idx}",
activation="silu",
is_act_and_mul=True,
params_dtype=torch.bfloat16,
quant_config=quant_config,
)
nvfp4_fused_moe = ModelOptNvFp4FusedMoE(quant_config, fml)
nvfp4_fused_moe.create_weights(
fml,
test_config.num_local_experts,
test_config.hidden_size,
test_config.intermediate_size,
params_dtype=torch.uint8,
global_num_experts=test_config.num_experts,
)
fml = fml.to(device)
w1_q, w2_q, quant_config = make_test_quant_config(
test_config.num_local_experts,
test_config.intermediate_size,
test_config.hidden_size,
in_dtype=torch.bfloat16,
quant_dtype="nvfp4",
block_shape=None,
per_act_token_quant=False,
)
fml.w13_weight.data = w1_q
fml.w2_weight.data = w2_q
fml.w2_input_scale.data = torch.randn_like(fml.w2_input_scale.data) / 5
fml.w13_input_scale.data = torch.randn_like(fml.w13_input_scale.data) / 5
fml.w2_weight_scale_2.data = torch.randn_like(fml.w2_weight_scale_2.data) / 5
fml.w13_weight_scale_2.data = torch.randn_like(fml.w13_weight_scale_2.data) / 5
fml.w2_weight_scale.data = (
torch.randn(fml.w2_weight_scale.data.shape, device=device) / 5
).to(fml.w2_weight_scale.data.dtype)
fml.w13_weight_scale.data = (
torch.randn(fml.w13_weight_scale.data.shape, device=device) / 5
).to(fml.w13_weight_scale.data.dtype)
nvfp4_fused_moe.process_weights_after_loading(fml)
fml.maybe_init_modular_kernel()
return fml
def _test_eplb_fml(env, world_size: int, test_config: TestConfig):
set_env_vars_and_device(env)
vllm_config = VllmConfig()
vllm_config.parallel_config.data_parallel_size = world_size
vllm_config.parallel_config.enable_expert_parallel = True
with set_current_vllm_config(vllm_config):
ensure_model_parallel_initialized(
tensor_model_parallel_size=1, pipeline_model_parallel_size=1
)
ep_group = get_dp_group().cpu_group
ep_rank = torch.distributed.get_rank()
device = torch.device(f"cuda:{ep_rank}")
fml_layers = [
make_fused_moe_layer(ep_rank, layer_idx, test_config).to(device)
for layer_idx in range(test_config.num_layers)
]
rank_expert_weights = [fml.get_expert_weights() for fml in fml_layers]
hidden_states = []
router_logits = []
for layer_idx in range(test_config.num_layers):
hidden_states.append(
torch.randn(
(test_config.num_tokens, test_config.hidden_size),
dtype=torch.bfloat16,
device=device,
)
)
router_logits.append(
torch.randn(
(test_config.num_tokens, test_config.num_experts),
dtype=torch.bfloat16,
device=device,
)
)
out_before_shuffle = []
with set_forward_context(
{},
num_tokens=test_config.num_tokens,
num_tokens_across_dp=torch.tensor(
[test_config.num_tokens] * world_size, device="cpu", dtype=torch.int
),
vllm_config=vllm_config,
):
for lidx, fml in enumerate(fml_layers):
out_before_shuffle.append(
fml(hidden_states[lidx].clone(), router_logits[lidx].clone())
)
indices = torch.zeros(
test_config.num_layers, test_config.num_experts, dtype=torch.long
)
for lidx in range(test_config.num_layers):
indices[lidx] = torch.Tensor(range(test_config.num_experts))
shuffled_indices = torch.zeros_like(indices)
for lidx in range(test_config.num_layers):
shuffled_indices[lidx] = torch.randperm(test_config.num_experts)
rearrange_expert_weights_inplace(
indices,
shuffled_indices,
rank_expert_weights,
ep_group,
is_profile=False,
)
num_global_experts = test_config.num_experts
logical_to_physical_map_list = []
for lidx, fml in enumerate(fml_layers):
physical_to_logical_map = shuffled_indices[lidx].to(device)
logical_to_physical_map = torch.empty(
(num_global_experts,), dtype=torch.int32, device=device
)
logical_to_physical_map[physical_to_logical_map] = torch.arange(
0, num_global_experts, dtype=torch.int32, device=device
)
logical_to_physical_map_list.append(
logical_to_physical_map.reshape(num_global_experts, 1)
)
logical_to_physical_map = torch.stack(logical_to_physical_map_list)
for lidx, fml in enumerate(fml_layers):
logical_replica_count = torch.ones(
(test_config.num_layers, num_global_experts),
dtype=torch.int32,
device=device,
)
fml.enable_eplb = True
fml.set_eplb_state(
lidx,
torch.zeros(
(test_config.num_layers, num_global_experts),
dtype=torch.int32,
device=device,
),
logical_to_physical_map,
logical_replica_count,
)
out_after_shuffle = []
with set_forward_context(
{},
num_tokens=test_config.num_tokens,
num_tokens_across_dp=torch.tensor(
[test_config.num_tokens] * world_size, device="cpu", dtype=torch.int
),
vllm_config=vllm_config,
):
for lidx, fml in enumerate(fml_layers):
out_after_shuffle.append(
fml(hidden_states[lidx].clone(), router_logits[lidx].clone())
)
for lidx in range(test_config.num_layers):
torch.testing.assert_close(
out_before_shuffle[lidx], out_after_shuffle[lidx], atol=1e-1, rtol=1e-1
)
@pytest.mark.parametrize("world_size", [2, 4])
@pytest.mark.parametrize("num_layers", [8])
@pytest.mark.parametrize("num_experts", [32])
@pytest.mark.parametrize("hidden_size", [256])
@pytest.mark.parametrize("intermediate_size", [256])
@pytest.mark.parametrize("num_tokens", [256])
@pytest.mark.parametrize("backend", ["latency", "throughput"])
def test_eplb_fml(
world_size: int,
num_layers: int,
num_experts: int,
hidden_size: int,
intermediate_size: int,
num_tokens: int,
backend: str,
monkeypatch,
):
monkeypatch.setenv("VLLM_USE_FLASHINFER_MOE_FP4", "1")
monkeypatch.setenv("VLLM_FLASHINFER_MOE_BACKEND", backend)
if torch.cuda.device_count() < world_size:
pytest.skip(f"Need at least {world_size} GPUs to run the test")
num_local_experts = num_experts // world_size
num_topk = 4
test_config = TestConfig(
num_layers=num_layers,
num_experts=num_experts,
num_local_experts=num_local_experts,
num_topk=num_topk,
hidden_size=hidden_size,
intermediate_size=intermediate_size,
num_tokens=num_tokens,
)
distributed_run(
_test_eplb_fml,
world_size,
test_config,
)