vllm/vllm/v1/attention/backends/mamba1_attn.py
Matthew Bonanni 1d93f11675
[Attention][CUDAGraph] Remove CG padding from attention backends (#29352)
Signed-off-by: Matthew Bonanni <mbonanni@redhat.com>
2025-12-02 13:48:08 -05:00

160 lines
6.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from dataclasses import dataclass
import torch
from vllm.attention.backends.abstract import AttentionBackend
from vllm.attention.backends.utils import PAD_SLOT_ID
from vllm.config import VllmConfig
from vllm.v1.attention.backends.mamba_attn import BaseMambaAttentionMetadataBuilder
from vllm.v1.attention.backends.utils import (
CommonAttentionMetadata,
split_decodes_and_prefills,
)
from vllm.v1.kv_cache_interface import AttentionSpec, MambaSpec
class Mamba1AttentionBackend(AttentionBackend):
@staticmethod
def get_builder_cls() -> type["Mamba1AttentionMetadataBuilder"]:
return Mamba1AttentionMetadataBuilder
@dataclass
class Mamba1AttentionMetadata:
query_start_loc_p: torch.Tensor
state_indices_tensor: torch.Tensor
has_initial_states_p: torch.Tensor | None
num_prefills: int
num_prefill_tokens: int
num_decodes: int
num_decode_tokens: int
block_idx_last_scheduled_token: torch.Tensor # shape: [batch,]
block_idx_first_scheduled_token_p: torch.Tensor # shape: [batch,]
block_idx_last_computed_token: torch.Tensor # shape: [batch,]
num_computed_tokens_p: torch.Tensor # shape: [batch,]
class Mamba1AttentionMetadataBuilder(
BaseMambaAttentionMetadataBuilder[Mamba1AttentionMetadata]
):
def __init__(
self,
kv_cache_spec: AttentionSpec,
layer_names: list[str],
vllm_config: VllmConfig,
device: torch.device,
):
super().__init__(kv_cache_spec, layer_names, vllm_config, device)
assert isinstance(kv_cache_spec, MambaSpec)
def build(
self,
common_prefix_len: int,
common_attn_metadata: CommonAttentionMetadata,
fast_build: bool = False,
) -> Mamba1AttentionMetadata:
num_reqs = common_attn_metadata.num_reqs
num_decodes, num_prefills, num_decode_tokens, num_prefill_tokens = (
split_decodes_and_prefills(
common_attn_metadata, decode_threshold=self.reorder_batch_threshold
)
)
has_initial_states_p = None
query_start_loc_p = None
num_computed_tokens, num_computed_tokens_p = None, None
block_idx_first_scheduled_token = None
block_idx_first_scheduled_token_p = None
# TODO(@Josephasafg) Mamba1 and Mamba2 have a lot of code in common here.
# We should consolidate this code
if self.vllm_config.cache_config.enable_prefix_caching:
# Return a tensor of shape (#requests, #max blocks)
state_indices_tensor = common_attn_metadata.block_table_tensor
mamba_block_size = self.kv_cache_spec.block_size
num_computed_tokens = common_attn_metadata.num_computed_tokens_cpu.to(
self.device
)
(
block_idx_last_computed_token,
block_idx_first_scheduled_token,
block_idx_last_scheduled_token,
) = self._compute_prefix_caching_block_indices(
common_attn_metadata, mamba_block_size
)
else:
# Always return just a single block per each request:
state_indices_tensor = common_attn_metadata.block_table_tensor[:, 0]
block_idx_last_scheduled_token = None
block_idx_last_computed_token = None
if num_prefills > 0:
query_start_loc_p = (
common_attn_metadata.query_start_loc[-num_prefills - 1 :]
- num_decode_tokens
)
has_initial_states_cpu = (
common_attn_metadata.num_computed_tokens_cpu[
num_reqs - num_prefills : num_reqs
]
> 0
)
has_initial_states_p = has_initial_states_cpu.to(
common_attn_metadata.query_start_loc.device
)
if self.vllm_config.cache_config.enable_prefix_caching:
assert num_computed_tokens is not None
num_computed_tokens_p = num_computed_tokens[
num_reqs - num_prefills : num_reqs
]
assert block_idx_first_scheduled_token is not None
block_idx_first_scheduled_token_p = block_idx_first_scheduled_token[
num_reqs - num_prefills : num_reqs
]
elif (
num_decodes > 0
and num_decodes <= self.decode_cudagraph_max_bs
and self.compilation_config.cudagraph_mode.has_full_cudagraphs()
):
self.state_indices_tensor[:num_decodes].copy_(
state_indices_tensor, non_blocking=True
)
state_indices_tensor = self.state_indices_tensor[:num_decode_tokens]
state_indices_tensor[num_decodes:] = PAD_SLOT_ID
if self.vllm_config.cache_config.enable_prefix_caching:
self.block_idx_last_scheduled_token[:num_decodes].copy_(
block_idx_last_scheduled_token, non_blocking=True
)
block_idx_last_scheduled_token = self.block_idx_last_scheduled_token[
:num_decode_tokens
]
self.block_idx_last_computed_token[:num_decodes].copy_(
block_idx_last_computed_token, non_blocking=True
)
block_idx_last_computed_token = self.block_idx_last_computed_token[
:num_decode_tokens
]
return Mamba1AttentionMetadata(
query_start_loc_p=query_start_loc_p,
has_initial_states_p=has_initial_states_p,
state_indices_tensor=state_indices_tensor,
num_prefills=num_prefills,
num_prefill_tokens=num_prefill_tokens,
num_decodes=num_decodes,
num_decode_tokens=num_decode_tokens,
block_idx_last_scheduled_token=block_idx_last_scheduled_token,
block_idx_first_scheduled_token_p=block_idx_first_scheduled_token_p,
block_idx_last_computed_token=block_idx_last_computed_token,
num_computed_tokens_p=num_computed_tokens_p,
)