rongfu.leng 68dfe28eae
[Feature][Benchmark] add --link-vars can filter when serve_param equal bench_param (#28909)
Signed-off-by: rongfu.leng <rongfu.leng@daocloud.io>
2025-11-24 02:02:28 -08:00

449 lines
13 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import argparse
import contextlib
import json
import shlex
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
from typing import ClassVar
from vllm.utils.import_utils import PlaceholderModule
from .param_sweep import ParameterSweep, ParameterSweepItem
from .server import ServerProcess
from .utils import sanitize_filename
try:
import pandas as pd
except ImportError:
pd = PlaceholderModule("pandas")
@contextlib.contextmanager
def run_server(
serve_cmd: list[str],
after_bench_cmd: list[str],
*,
show_stdout: bool,
serve_overrides: ParameterSweepItem,
dry_run: bool,
):
server_cmd = serve_overrides.apply_to_cmd(serve_cmd)
print("[BEGIN SERVER]")
print(f"Server overrides: {serve_overrides}")
print(f"Server command: {server_cmd}")
if dry_run:
yield None
print("[END SERVER]")
return
with ServerProcess(server_cmd, after_bench_cmd, show_stdout=show_stdout) as server:
yield server
print("[END SERVER]")
def _update_run_data(
run_data: dict[str, object],
serve_overrides: ParameterSweepItem,
bench_overrides: ParameterSweepItem,
run_number: int,
):
run_data["run_number"] = run_number
run_data.update(serve_overrides)
run_data.update(bench_overrides)
return run_data
def run_benchmark(
server: ServerProcess | None,
bench_cmd: list[str],
*,
serve_overrides: ParameterSweepItem,
bench_overrides: ParameterSweepItem,
run_number: int,
output_path: Path,
dry_run: bool,
):
benchmark_cmd = [
*bench_overrides.apply_to_cmd(bench_cmd),
"--percentile-metrics",
"ttft,tpot,itl,e2el",
"--save-result",
"--result-dir",
str(output_path.parent),
"--result-filename",
output_path.name,
]
print("[BEGIN BENCHMARK]")
print(f"Benchmark overrides: {bench_overrides}")
print(f"Run Number: {run_number}")
print(f"Benchmark command: {benchmark_cmd}")
print(f"Output file: {output_path}")
run_data: dict[str, object]
if output_path.exists():
print("Found existing results. Skipping.")
with output_path.open("rb") as f:
run_data = json.load(f)
return _update_run_data(
run_data,
serve_overrides,
bench_overrides,
run_number,
)
if server is None:
if not dry_run:
raise ValueError(f"Cannot find results at {output_path}")
print("[END BENCHMARK]")
return None
output_path.parent.mkdir(parents=True, exist_ok=True)
server.run_subcommand(benchmark_cmd)
server.after_bench()
with output_path.open("rb") as f:
run_data = json.load(f)
run_data = _update_run_data(
run_data,
serve_overrides,
bench_overrides,
run_number,
)
with output_path.open("w") as f:
json.dump(run_data, f, indent=4)
print("[END BENCHMARK]")
return run_data
def _get_comb_base_path(
output_dir: Path,
serve_comb: ParameterSweepItem,
bench_comb: ParameterSweepItem,
):
parts = list[str]()
if serve_comb:
parts.extend(("SERVE-", serve_comb.as_text(sep="-")))
if bench_comb:
parts.extend(("BENCH-", bench_comb.as_text(sep="-")))
return output_dir / sanitize_filename("-".join(parts))
def _get_comb_run_path(base_path: Path, run_number: int | None):
if run_number is None:
return base_path / "summary.json"
return base_path / f"run={run_number}.json"
def _comb_needs_server(
serve_comb: ParameterSweepItem,
bench_combs: ParameterSweep,
output_dir: Path,
):
for bench_comb in bench_combs:
base_path = _get_comb_base_path(output_dir, serve_comb, bench_comb)
if not _get_comb_run_path(base_path, run_number=None).exists():
return True
return False
def run_comb(
server: ServerProcess | None,
bench_cmd: list[str],
*,
serve_comb: ParameterSweepItem,
bench_comb: ParameterSweepItem,
base_path: Path,
num_runs: int,
dry_run: bool,
):
comb_data = list[dict[str, object]]()
for run_number in range(num_runs):
run_data = run_benchmark(
server,
bench_cmd,
serve_overrides=serve_comb,
bench_overrides=bench_comb,
run_number=run_number,
output_path=_get_comb_run_path(base_path, run_number),
dry_run=dry_run,
)
if run_data is not None:
comb_data.append(run_data)
if dry_run:
return None
with _get_comb_run_path(base_path, run_number=None).open("w") as f:
json.dump(comb_data, f, indent=4)
return comb_data
def run_combs(
serve_cmd: list[str],
bench_cmd: list[str],
after_bench_cmd: list[str],
*,
show_stdout: bool,
serve_params: ParameterSweep,
bench_params: ParameterSweep,
output_dir: Path,
num_runs: int,
dry_run: bool,
links: list[tuple[str, str]],
):
all_data = list[dict[str, object]]()
for serve_comb in serve_params:
with (
run_server(
serve_cmd,
after_bench_cmd,
show_stdout=show_stdout,
serve_overrides=serve_comb,
dry_run=dry_run,
)
if _comb_needs_server(serve_comb, bench_params, output_dir)
else contextlib.nullcontext()
) as server:
for bench_comb in bench_params:
should_run = all(
serve_key in serve_comb
and bench_key in bench_comb
and serve_comb[serve_key] == bench_comb[bench_key]
for serve_key, bench_key in links
)
if not should_run:
continue
base_path = _get_comb_base_path(output_dir, serve_comb, bench_comb)
comb_data = run_comb(
server,
bench_cmd,
serve_comb=serve_comb,
bench_comb=bench_comb,
base_path=base_path,
num_runs=num_runs,
dry_run=dry_run,
)
if comb_data is not None:
all_data.extend(comb_data)
if dry_run:
return None
combined_df = pd.DataFrame.from_records(all_data)
combined_df.to_csv(output_dir / "summary.csv")
return combined_df
@dataclass
class SweepServeArgs:
serve_cmd: list[str]
bench_cmd: list[str]
after_bench_cmd: list[str]
show_stdout: bool
serve_params: ParameterSweep
bench_params: ParameterSweep
output_dir: Path
num_runs: int
dry_run: bool
resume: str | None
link_vars: list[tuple[str, str]] | None
parser_name: ClassVar[str] = "serve"
parser_help: ClassVar[str] = "Run vLLM server benchmark under multiple settings."
@classmethod
def from_cli_args(cls, args: argparse.Namespace):
serve_cmd = shlex.split(args.serve_cmd)
bench_cmd = shlex.split(args.bench_cmd)
after_bench_cmd = (
[] if args.after_bench_cmd is None else shlex.split(args.after_bench_cmd)
)
if args.serve_params:
serve_params = ParameterSweep.read_json(args.serve_params)
else:
# i.e.: run serve_cmd without any modification
serve_params = ParameterSweep.from_records([{}])
if args.bench_params:
bench_params = ParameterSweep.read_json(args.bench_params)
else:
# i.e.: run bench_cmd without any modification
bench_params = ParameterSweep.from_records([{}])
link_vars = cls.parse_link_vars(args.link_vars)
num_runs = args.num_runs
if num_runs < 1:
raise ValueError("`num_runs` should be at least 1.")
return cls(
serve_cmd=serve_cmd,
bench_cmd=bench_cmd,
after_bench_cmd=after_bench_cmd,
show_stdout=args.show_stdout,
serve_params=serve_params,
bench_params=bench_params,
output_dir=Path(args.output_dir),
num_runs=num_runs,
dry_run=args.dry_run,
resume=args.resume,
link_vars=link_vars,
)
@classmethod
def add_cli_args(cls, parser: argparse.ArgumentParser) -> argparse.ArgumentParser:
parser.add_argument(
"--serve-cmd",
type=str,
required=True,
help="The command used to run the server: `vllm serve ...`",
)
parser.add_argument(
"--bench-cmd",
type=str,
required=True,
help="The command used to run the benchmark: `vllm bench serve ...`",
)
parser.add_argument(
"--after-bench-cmd",
type=str,
default=None,
help="After a benchmark run is complete, invoke this command instead of "
"the default `ServerWrapper.clear_cache()`.",
)
parser.add_argument(
"--show-stdout",
action="store_true",
help="If set, logs the standard output of subcommands. "
"Useful for debugging but can be quite spammy.",
)
parser.add_argument(
"--serve-params",
type=str,
default=None,
help="Path to JSON file containing a list of parameter combinations "
"for the `vllm serve` command. "
"If both `serve_params` and `bench_params` are given, "
"this script will iterate over their Cartesian product.",
)
parser.add_argument(
"--bench-params",
type=str,
default=None,
help="Path to JSON file containing a list of parameter combinations "
"for the `vllm bench serve` command. "
"If both `serve_params` and `bench_params` are given, "
"this script will iterate over their Cartesian product.",
)
parser.add_argument(
"-o",
"--output-dir",
type=str,
default="results",
help="The directory to which results are written.",
)
parser.add_argument(
"--num-runs",
type=int,
default=3,
help="Number of runs per parameter combination.",
)
parser.add_argument(
"--dry-run",
action="store_true",
help="If set, prints the commands to run, "
"then exits without executing them.",
)
parser.add_argument(
"--resume",
type=str,
default=None,
help="Set this to the name of a directory under `output_dir` (which is a "
"timestamp) to resume a previous execution of this script, i.e., only run "
"parameter combinations for which there are still no output files.",
)
parser.add_argument(
"--link-vars",
type=str,
default="",
help=(
"Comma-separated list of linked variables between serve and bench, "
"e.g. max_num_seqs=max_concurrency,max_model_len=random_input_len"
),
)
return parser
@staticmethod
def parse_link_vars(s: str) -> list[tuple[str, str]]:
if not s:
return []
pairs = []
for item in s.split(","):
a, b = item.split("=")
pairs.append((a.strip(), b.strip()))
return pairs
def run_main(args: SweepServeArgs):
timestamp = args.resume or datetime.now().strftime("%Y%m%d_%H%M%S")
output_dir = args.output_dir / timestamp
if args.resume and not output_dir.exists():
raise ValueError(f"Cannot resume from non-existent directory ({output_dir})")
try:
return run_combs(
serve_cmd=args.serve_cmd,
bench_cmd=args.bench_cmd,
after_bench_cmd=args.after_bench_cmd,
show_stdout=args.show_stdout,
serve_params=args.serve_params,
bench_params=args.bench_params,
output_dir=output_dir,
num_runs=args.num_runs,
dry_run=args.dry_run,
links=args.link_vars,
)
except BaseException as exc:
raise RuntimeError(
f"The script was terminated early. Use `--resume {timestamp}` "
f"to continue the script from its last checkpoint."
) from exc
def main(args: argparse.Namespace):
run_main(SweepServeArgs.from_cli_args(args))
if __name__ == "__main__":
parser = argparse.ArgumentParser(description=SweepServeArgs.parser_help)
SweepServeArgs.add_cli_args(parser)
main(parser.parse_args())