Cyrus Leung 34878a0b48
[Doc] Rename page titles (#20130)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-06-26 08:18:49 -07:00

26 lines
1.2 KiB
Markdown

---
title: Summary
---
[](){ #new-model }
!!! important
Many decoder language models can now be automatically loaded using the [Transformers backend][transformers-backend] without having to implement them in vLLM. See if `vllm serve <model>` works first!
vLLM models are specialized [PyTorch](https://pytorch.org/) models that take advantage of various [features][compatibility-matrix] to optimize their performance.
The complexity of integrating a model into vLLM depends heavily on the model's architecture.
The process is considerably straightforward if the model shares a similar architecture with an existing model in vLLM.
However, this can be more complex for models that include new operators (e.g., a new attention mechanism).
Read through these pages for a step-by-step guide:
- [Basic Model](basic.md)
- [Registering a Model](registration.md)
- [Unit Testing](tests.md)
- [Multi-Modal Support](multimodal.md)
!!! tip
If you are encountering issues while integrating your model into vLLM, feel free to open a [GitHub issue](https://github.com/vllm-project/vllm/issues)
or ask on our [developer slack](https://slack.vllm.ai).
We will be happy to help you out!