vllm/tests/models/decoder_only/language/test_big_models.py
bnellnm 3cb07a36a2
[Misc] Upgrade to pytorch 2.5 (#9588)
Signed-off-by: Bill Nell <bill@neuralmagic.com>
Signed-off-by: youkaichao <youkaichao@gmail.com>
Co-authored-by: youkaichao <youkaichao@gmail.com>
2024-10-27 09:44:24 +00:00

94 lines
2.9 KiB
Python

"""Compare the outputs of HF and vLLM when using greedy sampling.
This tests bigger models and use half precision.
Run `pytest tests/models/test_big_models.py`.
"""
import pytest
from vllm.platforms import current_platform
from ...utils import check_logprobs_close, check_outputs_equal
MODELS = [
"meta-llama/Llama-2-7b-hf",
# "mistralai/Mistral-7B-v0.1", # Tested by test_mistral.py
# "Deci/DeciLM-7b", # Broken
# "tiiuae/falcon-7b", # Broken
"EleutherAI/gpt-j-6b",
# "mosaicml/mpt-7b", # Broken
# "Qwen/Qwen1.5-0.5B" # Broken,
]
if not current_platform.is_cpu():
MODELS += [
# fused_moe which not supported on CPU
"openbmb/MiniCPM3-4B",
# Head size isn't supported on CPU
"h2oai/h2o-danube3-4b-base",
]
# TODO: remove this after CPU float16 support ready
target_dtype = "float" if current_platform.is_cpu() else "half"
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", [target_dtype])
@pytest.mark.parametrize("max_tokens", [32])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
max_tokens: int,
) -> None:
if model == "openbmb/MiniCPM3-4B":
# the output becomes slightly different when upgrading to
# pytorch 2.5 . Changing to logprobs checks instead of exact
# output checks.
NUM_LOG_PROBS = 8
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy_logprobs_limit(
example_prompts, max_tokens, NUM_LOG_PROBS)
with vllm_runner(model, dtype=dtype, enforce_eager=True) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
example_prompts, max_tokens, NUM_LOG_PROBS)
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
else:
with hf_runner(model, dtype=dtype) as hf_model:
hf_outputs = hf_model.generate_greedy(example_prompts, max_tokens)
with vllm_runner(model, dtype=dtype, enforce_eager=True) as vllm_model:
vllm_outputs = vllm_model.generate_greedy(example_prompts,
max_tokens)
check_outputs_equal(
outputs_0_lst=hf_outputs,
outputs_1_lst=vllm_outputs,
name_0="hf",
name_1="vllm",
)
@pytest.mark.parametrize("model", MODELS)
@pytest.mark.parametrize("dtype", [target_dtype])
def test_model_print(
vllm_runner,
model: str,
dtype: str,
) -> None:
with vllm_runner(model, dtype=dtype, enforce_eager=True) as vllm_model:
# This test is for verifying whether the model's extra_repr
# can be printed correctly.
print(vllm_model.model.llm_engine.model_executor.driver_worker.
model_runner.model)