mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 02:04:54 +08:00
Signed-off-by: Luka Govedič <lgovedic@redhat.com> Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
112 lines
4.6 KiB
Python
112 lines
4.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import weakref
|
|
from collections.abc import Callable, Sequence
|
|
from contextlib import nullcontext
|
|
from copy import deepcopy
|
|
|
|
import depyf
|
|
from torch import fx
|
|
from torch._ops import OpOverload
|
|
from torch.fx._utils import lazy_format_graph_code
|
|
|
|
from vllm.compilation.fx_utils import find_op_nodes
|
|
from vllm.compilation.inductor_pass import InductorPass
|
|
from vllm.compilation.pass_manager import with_pattern_match_debug
|
|
from vllm.compilation.vllm_inductor_pass import VllmInductorPass
|
|
from vllm.config import VllmConfig, get_current_vllm_config
|
|
from vllm.logger import init_logger
|
|
|
|
logger = init_logger("vllm.tests.compile.backend")
|
|
|
|
|
|
class LazyInitPass(InductorPass):
|
|
"""
|
|
If there's a pass that we want to initialize lazily in a test,
|
|
we can wrap it in LazyInitPass, which will initialize the pass when invoked
|
|
and then immediately invoke it.
|
|
"""
|
|
|
|
def __init__(self, pass_cls: type[VllmInductorPass], vllm_config: VllmConfig):
|
|
self.pass_cls = pass_cls
|
|
self.vllm_config = weakref.proxy(vllm_config) # avoid cycle
|
|
|
|
def __call__(self, graph: fx.Graph) -> None:
|
|
self.pass_ = self.pass_cls(self.vllm_config)
|
|
self.pass_(graph)
|
|
|
|
|
|
class TestBackend:
|
|
"""
|
|
This class provides a simple Inductor backend that can be used for testing.
|
|
It takes a list of custom passes and runs them after Inductor's passes.
|
|
It also saves the graph before and after the custom passes for inspection.
|
|
|
|
Inductor config can be modified directly by editing the inductor_config
|
|
property. This can be helpful for adding passes like the
|
|
'pre_grad_custom_pass' and the 'post_grad_custom_pre_pass'.
|
|
Inductor config is default-initialized from VllmConfig.CompilationConfig.
|
|
"""
|
|
|
|
def __init__(self, *passes: InductorPass | Callable[[fx.Graph], None]):
|
|
self.custom_passes = list(passes)
|
|
vllm_config = get_current_vllm_config()
|
|
compile_config = vllm_config.compilation_config
|
|
# Deepcopy to allow multiple TestBackend instances to use the same VllmConfig
|
|
self.inductor_config = deepcopy(compile_config.inductor_compile_config)
|
|
self.inductor_config["force_disable_caches"] = True
|
|
self.inductor_config["post_grad_custom_post_pass"] = self.post_pass
|
|
|
|
if debug_dump_path := vllm_config.compile_debug_dump_path():
|
|
logger.debug("Dumping depyf output to %s", debug_dump_path)
|
|
self.debug_ctx = depyf.prepare_debug(debug_dump_path.as_posix())
|
|
else:
|
|
self.debug_ctx = nullcontext()
|
|
|
|
def __call__(self, graph: fx.GraphModule, example_inputs):
|
|
self.graph_pre_compile = deepcopy(graph)
|
|
from torch._inductor.compile_fx import compile_fx
|
|
|
|
with self.debug_ctx:
|
|
return compile_fx(
|
|
graph, example_inputs, config_patches=self.inductor_config
|
|
)
|
|
|
|
@with_pattern_match_debug
|
|
def post_pass(self, graph: fx.Graph):
|
|
self.graph_pre_pass = deepcopy(graph)
|
|
lazy_format_graph_code("graph_pre_pass", graph.owning_module)
|
|
|
|
VllmInductorPass.dump_prefix = 0
|
|
for pass_ in self.custom_passes:
|
|
pass_(graph)
|
|
VllmInductorPass.dump_prefix += 1
|
|
|
|
VllmInductorPass.dump_prefix = None
|
|
|
|
self.graph_post_pass = deepcopy(graph)
|
|
lazy_format_graph_code("graph_post_pass", graph.owning_module)
|
|
# assign by reference, will reflect the final state of the graph
|
|
self.final_graph = graph
|
|
|
|
def check_before_ops(self, ops: Sequence[OpOverload], fully_replaced=True):
|
|
for op in ops:
|
|
num_pre = len(list(find_op_nodes(op, self.graph_pre_pass)))
|
|
num_post = len(list(find_op_nodes(op, self.graph_post_pass)))
|
|
assert num_pre > 0, f"Op {op.name()} not found in pre-pass graph"
|
|
assert num_pre > num_post, f"All nodes remain for op {op.name()}"
|
|
if fully_replaced:
|
|
assert num_post == 0, f"Unexpected op {op.name()} in post-pass graph"
|
|
|
|
def check_after_ops(self, ops: Sequence[OpOverload]):
|
|
for op in ops:
|
|
num_pre = len(list(find_op_nodes(op, self.graph_pre_pass)))
|
|
num_post = len(list(find_op_nodes(op, self.graph_post_pass)))
|
|
assert num_pre == 0, f"Unexpected op {op.name()} in pre-pass graph"
|
|
assert num_post > 0, f"Op {op.name()} not found in post-pass graph"
|
|
|
|
def op_count(self, op: OpOverload, before=False) -> int:
|
|
graph = self.graph_pre_pass if before else self.graph_post_pass
|
|
return len(list(find_op_nodes(op, graph)))
|