vllm/tests/compile/test_functionalization.py
Luka Govedič bd7157a071
[torch.compile] Enable attention and allreduce fusion without custom ops enabled (#24604)
Signed-off-by: Luka Govedič <lgovedic@redhat.com>
Signed-off-by: Luka Govedič <ProExpertProg@users.noreply.github.com>
2025-10-17 08:10:23 -06:00

267 lines
9.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
import vllm.envs as envs
from vllm.compilation.activation_quant_fusion import ActivationQuantFusionPass
from vllm.compilation.fix_functionalization import FixFunctionalizationPass
from vllm.compilation.fusion import RMSNormQuantFusionPass
from vllm.compilation.fx_utils import find_auto_fn, find_auto_fn_maybe, is_func
from vllm.compilation.noop_elimination import NoOpEliminationPass
from vllm.compilation.post_cleanup import PostCleanupPass
from vllm.config import (
CompilationConfig,
ModelConfig,
PassConfig,
VllmConfig,
set_current_vllm_config,
)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.quantization.utils.quant_utils import GroupShape
from vllm.model_executor.layers.quantization.utils.w8a8_utils import Fp8LinearOp
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.platforms import current_platform
from .backend import TestBackend
TEST_FP8 = current_platform.supports_fp8()
FP8_DTYPE = current_platform.fp8_dtype()
class TestSiluMul(torch.nn.Module):
def __init__(self, hidden_size: int = 128):
super().__init__()
self.silu_and_mul = SiluAndMul()
self.wscale = torch.rand(1, dtype=torch.float32)
self.scale = torch.rand(1, dtype=torch.float32)
if TEST_FP8:
self.w = torch.rand(hidden_size, hidden_size).to(dtype=FP8_DTYPE).t()
self.fp8_linear = Fp8LinearOp(
act_quant_static=True,
act_quant_group_shape=GroupShape.PER_TENSOR,
)
def forward(self, x):
y = self.silu_and_mul(x)
if TEST_FP8:
x2 = self.fp8_linear.apply(y, self.w, self.wscale, input_scale=self.wscale)
return x2
else:
return y
def example_inputs(self, num_tokens=32, hidden_size=128):
return (torch.rand(num_tokens, hidden_size * 2),)
def ops_in_model(self, do_fusion):
if TEST_FP8 and do_fusion:
return [torch.ops._C.silu_and_mul_quant.default]
else:
return [torch.ops._C.silu_and_mul.default]
def ops_not_in_model(self):
return []
class TestFusedAddRMSNorm(torch.nn.Module):
def __init__(self, hidden_size=16, intermediate_size=32):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = torch.nn.Parameter(
torch.empty((intermediate_size, hidden_size))
)
self.norm = RMSNorm(intermediate_size, 1e-05)
self.norm.weight = torch.nn.Parameter(torch.ones(intermediate_size))
torch.nn.init.normal_(self.gate_proj, std=0.02)
if TEST_FP8:
self.fp8_linear = Fp8LinearOp(act_quant_static=True)
self.scale = torch.rand(1, dtype=torch.float32)
self.w = torch.rand(hidden_size, intermediate_size).to(dtype=FP8_DTYPE).t()
self.wscale = torch.rand(1, dtype=torch.float32)
def forward(self, hidden_states, residual):
# Reshape input
view = hidden_states.reshape(-1, self.hidden_size)
# matrix multiplication
permute = self.gate_proj.permute(1, 0)
mm = torch.mm(view, permute)
# layer normalization
norm_output, residual_output = self.norm(mm, residual)
if TEST_FP8:
# scaled_mm with static input quantization
fp8_linear_result = self.fp8_linear.apply(
norm_output,
self.w,
self.wscale,
input_scale=self.scale.to(norm_output.device),
)
return fp8_linear_result, residual_output
else:
return norm_output, residual_output
def example_inputs(self, batch_size=8, hidden_size=16, seq_len=16):
hidden_states = torch.randn((batch_size * seq_len, hidden_size))
residual = torch.randn((batch_size * seq_len, hidden_size))
return (hidden_states, residual)
def ops_in_model(self, do_fusion):
if TEST_FP8 and do_fusion:
return [torch.ops._C.fused_add_rms_norm_static_fp8_quant.default]
else:
return [torch.ops._C.fused_add_rms_norm.default]
def ops_not_in_model(self):
return []
class TestRotaryEmbedding(torch.nn.Module):
def __init__(self, head_dim=64, rotary_dim=None, max_position=2048, base=10000):
super().__init__()
self.head_dim = head_dim
self.rotary_dim = rotary_dim or head_dim
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.rotary_dim,
max_position=max_position,
base=base,
)
def forward(self, positions, q, k):
q_rotated, k_rotated = self.rotary_emb(positions, q, k)
return q_rotated, k_rotated
def example_inputs(self, num_tokens=32, head_dim=64):
positions = torch.arange(num_tokens, dtype=torch.long)
q = torch.randn(num_tokens, head_dim)
k = torch.randn(num_tokens, head_dim)
return (positions, q, k)
def ops_in_model(self, do_fusion):
return [torch.ops._C.rotary_embedding.default]
def ops_not_in_model(self):
return []
class TestRotaryEmbeddingSliceScatter(torch.nn.Module):
def __init__(self, head_dim=64, num_heads=4, max_position=2048, base=10000):
super().__init__()
self.head_dim = head_dim
self.num_heads = num_heads
self.hidden_size = head_dim * num_heads
self.qkv_proj = torch.nn.Linear(
self.hidden_size, self.hidden_size * 3, bias=False
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position,
base=base,
)
def forward(self, positions, hidden_states):
# Simulate the pattern: mm -> split_with_sizes -> rotary_embedding
# -> slice_scatter -> split_with_sizes
qkv = self.qkv_proj(hidden_states)
split_sizes = [self.hidden_size, self.hidden_size, self.hidden_size]
q, k, v = torch.split(qkv, split_sizes, dim=-1)
q_rotated, k_rotated = self.rotary_emb(positions, q, k)
qkv_updated = torch.cat([q_rotated, k_rotated, v], dim=-1)
return qkv_updated
def example_inputs(self, num_tokens=32, head_dim=64, num_heads=4):
hidden_size = head_dim * num_heads
positions = torch.arange(num_tokens, dtype=torch.long)
hidden_states = torch.randn(num_tokens, hidden_size)
return (positions, hidden_states)
def ops_in_model(self, do_fusion):
return [torch.ops._C.rotary_embedding.default]
def ops_not_in_model(self):
return [torch.ops.aten.slice_scatter.default]
MODELS = [
TestSiluMul,
TestFusedAddRMSNorm,
TestRotaryEmbedding,
TestRotaryEmbeddingSliceScatter,
]
@pytest.mark.parametrize("dtype", [torch.float16, torch.bfloat16])
@pytest.mark.parametrize("model_class", MODELS)
@pytest.mark.parametrize("do_fusion", [True, False])
@pytest.mark.skipif(envs.VLLM_TARGET_DEVICE != "cuda", reason="Only test on CUDA")
def test_fix_functionalization(
model_class: torch.nn.Module, do_fusion: bool, dtype: torch.dtype
):
torch.set_default_device("cuda")
torch.set_default_dtype(dtype)
vllm_config = VllmConfig(
model_config=ModelConfig(dtype=dtype),
compilation_config=CompilationConfig(
custom_ops=["all"],
pass_config=PassConfig(enable_fusion=do_fusion, enable_noop=True),
),
)
with set_current_vllm_config(vllm_config):
assert RMSNorm.enabled()
noop_pass = NoOpEliminationPass(vllm_config)
fusion_pass = RMSNormQuantFusionPass(vllm_config)
cleanup_pass = PostCleanupPass(vllm_config)
act_quant_fusion_pass = ActivationQuantFusionPass(vllm_config)
passes = (
[noop_pass, fusion_pass, act_quant_fusion_pass, cleanup_pass]
if do_fusion
else [noop_pass, cleanup_pass]
)
func_pass = FixFunctionalizationPass(vllm_config)
backend_func = TestBackend(*passes, func_pass)
backend_no_func = TestBackend(*passes)
model = model_class()
torch.compile(model, backend=backend_func)(*model.example_inputs())
torch.compile(model, backend=backend_no_func)(*model.example_inputs())
# check if the functionalization pass is applied
for op in model.ops_in_model(do_fusion):
find_auto_fn(backend_no_func.graph_post_pass.nodes, op)
assert find_auto_fn_maybe(backend_func.graph_post_pass.nodes, op) is None
# make sure the ops were all de-functionalized
found = dict()
for node in backend_func.graph_post_pass.nodes:
for op in model.ops_in_model(do_fusion):
if is_func(node, op):
found[op] = True
for op in model.ops_not_in_model():
if is_func(node, op):
found[op] = True
assert all(found[op] for op in model.ops_in_model(do_fusion))
assert all(not found.get(op) for op in model.ops_not_in_model())