mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-19 06:44:28 +08:00
1149 lines
40 KiB
Python
1149 lines
40 KiB
Python
# Adapted from
|
|
# https://huggingface.co/Qwen/Qwen-7B/blob/main/modeling_qwen.py
|
|
# Copyright (c) Alibaba Cloud.
|
|
# LICENSE: https://huggingface.co/Qwen/Qwen-7B/blob/main/LICENSE
|
|
"""Inference-only QWen model compatible with HuggingFace weights."""
|
|
|
|
import copy
|
|
import math
|
|
import re
|
|
import unicodedata
|
|
from functools import lru_cache, partial
|
|
from typing import (AbstractSet, Any, Callable, Collection, Dict, Iterable,
|
|
List, Literal, Mapping, Optional, Set, Tuple, TypedDict,
|
|
Union)
|
|
|
|
import torch
|
|
from torch import nn
|
|
from torchvision import transforms
|
|
from torchvision.transforms import InterpolationMode
|
|
from transformers import (BatchFeature, PretrainedConfig, PreTrainedTokenizer,
|
|
TensorType)
|
|
from transformers.image_utils import ImageInput
|
|
from transformers.tokenization_utils_base import TextInput
|
|
|
|
from vllm.attention import Attention, AttentionMetadata
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.activation import SiluAndMul, get_act_fn
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
|
|
MergedColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.resampler import Resampler2, get_abs_pos
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.sampler import SamplerOutput, get_sampler
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead, VocabParallelEmbedding)
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
|
|
from vllm.model_executor.models.module_mapping import MultiModelKeys
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (MultiModalFieldConfig, MultiModalKwargs,
|
|
NestedTensors)
|
|
from vllm.multimodal.parse import MultiModalDataItems
|
|
from vllm.multimodal.processing import (BaseMultiModalProcessor,
|
|
BaseProcessingInfo, PromptReplacement,
|
|
PromptReplacementDetails)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder, ProcessorInputs
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .interfaces import SupportsLoRA, SupportsMultiModal, SupportsPP
|
|
from .utils import (flatten_bn, is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory, make_layers,
|
|
maybe_prefix, merge_multimodal_embeddings)
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
# NOTE: Qwen models have a few other special tags, e.g., ref, bbox, quad;
|
|
# for the time being, these tags are not considered as special at encoding
|
|
# time. This may change as VLLMs multimodal API changes in the future.
|
|
IMG_START = "<img>"
|
|
IMG_END = "</img>"
|
|
IMG_PAD = "<imgpad>"
|
|
# Image context is fixed at 256 for all images
|
|
MAX_QWEN_IMG_TOKENS = 256
|
|
# Image normalization params
|
|
CLIP_MEAN = (0.48145466, 0.4578275, 0.40821073)
|
|
CLIP_STD = (0.26862954, 0.26130258, 0.27577711)
|
|
|
|
|
|
class QwenImagePixelInputs(TypedDict):
|
|
type: Literal["pixel_values"]
|
|
data: torch.Tensor
|
|
"""
|
|
Shape: `(batch_size * num_images, 3, image_size, image_size)`
|
|
|
|
Note that image_size is the value in the vision config to which we resize
|
|
the image to in the normalization transform. Currently multi-image support
|
|
can only be leveraged by passing image embeddings directly.
|
|
"""
|
|
|
|
|
|
class QwenImageEmbeddingInputs(TypedDict):
|
|
type: Literal["image_embeds"]
|
|
data: torch.Tensor
|
|
"""Shape: `(batch_size * num_images, 256, hidden_size)`
|
|
|
|
`hidden_size` must match the hidden size of the language model backbone
|
|
and is stored in the visual config of the model if we have one.
|
|
"""
|
|
|
|
|
|
QwenImageInputs = Union[QwenImagePixelInputs, QwenImageEmbeddingInputs]
|
|
|
|
|
|
class VisualAttention(nn.Module):
|
|
"""self-attention layer class.
|
|
Self-attention layer takes input with size [s, b, h]
|
|
and returns output of the same size.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
embed_dim: int,
|
|
num_heads: int,
|
|
bias: bool = True,
|
|
kdim: Optional[int] = None,
|
|
vdim: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
self.embed_dim = embed_dim
|
|
self.kdim = kdim if kdim is not None else embed_dim
|
|
self.vdim = vdim if vdim is not None else embed_dim
|
|
self._qkv_same_embed_dim = self.kdim == embed_dim \
|
|
and self.vdim == embed_dim
|
|
|
|
self.num_heads = num_heads
|
|
|
|
# Per attention head and per partition values.
|
|
assert embed_dim % num_heads == 0
|
|
self.hidden_size_per_attention_head = embed_dim // num_heads
|
|
self.num_attention_heads_per_partition = num_heads
|
|
self.hidden_size_per_partition = embed_dim
|
|
|
|
# Strided linear layer.
|
|
assert self._qkv_same_embed_dim, \
|
|
'Visual Attention implementation only supports self-attention'
|
|
self.in_proj = ReplicatedLinear(embed_dim, 3 * embed_dim)
|
|
self.out_proj = ReplicatedLinear(embed_dim, embed_dim)
|
|
self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
# query/key/value: [sq, b, h]
|
|
sq, b, _ = x.size()
|
|
mixed_x_layer, _ = self.in_proj(x)
|
|
|
|
# [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
|
|
new_tensor_shape = mixed_x_layer.size()[:-1] + \
|
|
(self.num_attention_heads_per_partition,
|
|
3 * self.hidden_size_per_attention_head)
|
|
mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)
|
|
|
|
# [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
|
|
query_layer, key_layer, value_layer = mixed_x_layer.split(
|
|
self.hidden_size_per_attention_head, dim=-1)
|
|
|
|
# [sq, b, np, hn] -> [sq, b * np, hn]
|
|
query_layer = query_layer.view(
|
|
sq, b * self.num_attention_heads_per_partition,
|
|
self.hidden_size_per_attention_head).transpose(0, 1)
|
|
# [sk, b, np, hn] -> [sk, b * np, hn]
|
|
key_layer = key_layer.view(
|
|
sq, b * self.num_attention_heads_per_partition,
|
|
self.hidden_size_per_attention_head).transpose(0, 1)
|
|
|
|
q_scaled = query_layer / self.norm_factor
|
|
if attn_mask is not None:
|
|
attention_probs = torch.baddbmm(attn_mask, q_scaled,
|
|
key_layer.transpose(-2, -1))
|
|
else:
|
|
attention_probs = torch.bmm(q_scaled, key_layer.transpose(-2, -1))
|
|
attention_probs = attention_probs.softmax(dim=-1)
|
|
|
|
value_layer = value_layer.view(
|
|
sq, b * self.num_attention_heads_per_partition,
|
|
self.hidden_size_per_attention_head).transpose(0, 1)
|
|
|
|
# matmul: [b * np, sq, hn]
|
|
context_layer = torch.bmm(attention_probs, value_layer)
|
|
|
|
# change view [b, np, sq, hn]
|
|
context_layer = context_layer.view(
|
|
b, self.num_attention_heads_per_partition, sq,
|
|
self.hidden_size_per_attention_head)
|
|
|
|
# [b, np, sq, hn] --> [sq, b, np, hn]
|
|
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
|
|
|
# [sq, b, np, hn] --> [sq, b, hp]
|
|
new_context_layer_shape = context_layer.size()[:-2] + \
|
|
(self.hidden_size_per_partition,)
|
|
context_layer = context_layer.view(*new_context_layer_shape)
|
|
|
|
output, _ = self.out_proj(context_layer)
|
|
|
|
return output
|
|
|
|
|
|
class QwenVMLP(nn.Module):
|
|
"""MLP for the visual component of the Qwen model."""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.c_fc = ColumnParallelLinear(hidden_size,
|
|
intermediate_size,
|
|
bias=True,
|
|
quant_config=quant_config)
|
|
self.act_fn = get_act_fn("gelu")
|
|
self.c_proj = RowParallelLinear(
|
|
intermediate_size,
|
|
hidden_size,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
def forward(self, x):
|
|
x, _ = self.c_fc(x)
|
|
x = self.act_fn(x)
|
|
x, _ = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class VisualAttentionBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
d_model: int,
|
|
n_head: int,
|
|
mlp_ratio: float = 4.0,
|
|
norm_layer: Callable[[int], nn.Module] = nn.LayerNorm,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.ln_1 = norm_layer(d_model)
|
|
self.ln_2 = norm_layer(d_model)
|
|
mlp_width = int(d_model * mlp_ratio)
|
|
self.attn = VisualAttention(d_model, n_head)
|
|
self.mlp = QwenVMLP(
|
|
hidden_size=d_model,
|
|
intermediate_size=mlp_width,
|
|
quant_config=quant_config,
|
|
)
|
|
|
|
def attention(
|
|
self,
|
|
x: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
attn_mask = attn_mask.to(x.dtype) if attn_mask is not None else None
|
|
return self.attn(x, attn_mask=attn_mask)
|
|
|
|
def forward(
|
|
self,
|
|
x: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
x = x + self.attention(self.ln_1(x), attn_mask=attn_mask)
|
|
x = x + self.mlp(self.ln_2(x))
|
|
return x
|
|
|
|
|
|
class TransformerBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
mlp_ratio: float = 4.0,
|
|
norm_layer: Callable[[int], nn.Module] = nn.LayerNorm,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.width = width
|
|
self.layers = layers
|
|
|
|
self.resblocks = nn.ModuleList([
|
|
VisualAttentionBlock(width,
|
|
heads,
|
|
mlp_ratio,
|
|
norm_layer=norm_layer,
|
|
quant_config=quant_config)
|
|
for _ in range(layers)
|
|
])
|
|
|
|
def get_cast_dtype(self) -> torch.dtype:
|
|
return self.resblocks[0].mlp.c_fc.weight.dtype
|
|
|
|
def get_cast_device(self) -> torch.device:
|
|
return self.resblocks[0].mlp.c_fc.weight.device
|
|
|
|
def forward(self,
|
|
x: torch.Tensor,
|
|
attn_mask: Optional[torch.Tensor] = None) -> torch.Tensor:
|
|
for r in self.resblocks:
|
|
x = r(x, attn_mask=attn_mask)
|
|
return x
|
|
|
|
|
|
class VisionTransformer(nn.Module):
|
|
|
|
def __init__(self,
|
|
image_size: int,
|
|
patch_size: int,
|
|
width: int,
|
|
layers: int,
|
|
heads: int,
|
|
mlp_ratio: float,
|
|
n_queries: int = 256,
|
|
output_dim: int = 512,
|
|
image_start_id: int = 151857,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
**kwargs):
|
|
super().__init__()
|
|
image_height, image_width = self.image_size = (image_size, image_size)
|
|
patch_height, patch_width = self.patch_size = (patch_size, patch_size)
|
|
self.grid_size = (image_height // patch_height,
|
|
image_width // patch_width)
|
|
self.output_dim = output_dim
|
|
self.conv1 = nn.Conv2d(in_channels=3,
|
|
out_channels=width,
|
|
kernel_size=patch_size,
|
|
stride=patch_size,
|
|
bias=False)
|
|
|
|
# class embeddings and positional embeddings
|
|
scale = width**-0.5
|
|
self.positional_embedding = nn.Parameter(scale *
|
|
torch.randn(256, width))
|
|
|
|
norm_layer = partial(nn.LayerNorm, eps=1e-6)
|
|
|
|
self.ln_pre = norm_layer(width)
|
|
self.transformer = TransformerBlock(width,
|
|
layers,
|
|
heads,
|
|
mlp_ratio,
|
|
norm_layer=norm_layer,
|
|
quant_config=quant_config)
|
|
|
|
self.attn_pool = Resampler2(
|
|
grid_size=int(math.sqrt(n_queries)),
|
|
embed_dim=output_dim,
|
|
num_heads=output_dim // 128,
|
|
kv_dim=width,
|
|
norm_layer=norm_layer,
|
|
adaptive=False,
|
|
do_post_projection=False,
|
|
).to(
|
|
device=self.positional_embedding.device,
|
|
dtype=self.positional_embedding.dtype,
|
|
)
|
|
|
|
self.ln_post = norm_layer(output_dim)
|
|
self.proj = nn.Parameter(
|
|
(output_dim**-0.5) * torch.randn(output_dim, output_dim))
|
|
|
|
self.image_start_id = image_start_id
|
|
self.image_end_id = image_start_id + 1
|
|
self.image_pad_id = image_start_id + 2
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
x = x.to(
|
|
dtype=self.transformer.get_cast_dtype(),
|
|
device=self.transformer.get_cast_device(),
|
|
)
|
|
|
|
# to patches
|
|
x = self.conv1(x) # shape = [*, width, grid, grid]
|
|
x = x.reshape(x.shape[0], x.shape[1],
|
|
-1) # shape = [*, width, grid ** 2]
|
|
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
|
|
|
x = x + get_abs_pos(self.positional_embedding, int(math.sqrt(
|
|
x.size(1))))
|
|
|
|
x = self.ln_pre(x)
|
|
|
|
x = x.permute(1, 0, 2) # NLD -> LND
|
|
x = self.transformer(x)
|
|
x = x.permute(1, 0, 2) # LND -> NLD
|
|
|
|
x = self.attn_pool(x)
|
|
x = self.ln_post(x)
|
|
x = x @ self.proj
|
|
|
|
return x
|
|
|
|
|
|
class QWenMLP(nn.Module):
|
|
"""MLP for the language component of the Qwen model, which contains a
|
|
MergedColumnParallelLinear merging 2 outputs via silu activation."""
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
intermediate_size: int,
|
|
hidden_act: str = "silu",
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
):
|
|
super().__init__()
|
|
self.gate_up_proj = MergedColumnParallelLinear(
|
|
hidden_size, [intermediate_size] * 2,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
self.c_proj = RowParallelLinear(intermediate_size,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config)
|
|
if hidden_act != "silu":
|
|
raise ValueError(f"Unsupported activation: {hidden_act}. "
|
|
"Only silu is supported for now.")
|
|
self.act_fn = SiluAndMul()
|
|
|
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
gate_up, _ = self.gate_up_proj(x)
|
|
x = self.act_fn(gate_up)
|
|
x, _ = self.c_proj(x)
|
|
return x
|
|
|
|
|
|
class QWenAttention(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
max_position_embeddings: int,
|
|
rope_theta: float = 10000,
|
|
rope_scaling: Optional[Dict[str, Any]] = None,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.hidden_size = hidden_size
|
|
tensor_model_parallel_world_size = get_tensor_model_parallel_world_size(
|
|
)
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tensor_model_parallel_world_size == 0
|
|
self.num_heads = (self.total_num_heads //
|
|
tensor_model_parallel_world_size)
|
|
self.head_dim = hidden_size // self.total_num_heads
|
|
self.c_attn = QKVParallelLinear(
|
|
hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
bias=True,
|
|
quant_config=quant_config,
|
|
)
|
|
self.c_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
)
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
base=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
)
|
|
self.attn = Attention(self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.c_attn(hidden_states)
|
|
q, k, v = qkv.chunk(chunks=3, dim=-1)
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
attn_output = self.attn(q, k, v, kv_cache, attn_metadata)
|
|
output, _ = self.c_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class QWenBlock(nn.Module):
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
cache_config: Optional[CacheConfig] = None,
|
|
quant_config: Optional[QuantizationConfig] = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.ln_1 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
rope_theta = getattr(config, "rope_theta", 10000)
|
|
rope_scaling = getattr(config, "rope_scaling", None)
|
|
self.attn = QWenAttention(config.hidden_size,
|
|
config.num_attention_heads,
|
|
config.max_position_embeddings,
|
|
rope_theta=rope_theta,
|
|
rope_scaling=rope_scaling,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.attn")
|
|
|
|
self.ln_2 = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
self.mlp = QWenMLP(config.hidden_size,
|
|
config.intermediate_size // 2,
|
|
quant_config=quant_config)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
kv_cache: torch.Tensor,
|
|
attn_metadata: AttentionMetadata,
|
|
residual: Optional[torch.Tensor],
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
# Self Attention
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.ln_1(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.ln_1(hidden_states, residual)
|
|
hidden_states = self.attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
kv_cache=kv_cache,
|
|
attn_metadata=attn_metadata,
|
|
)
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.ln_2(hidden_states, residual)
|
|
hidden_states = self.mlp(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile
|
|
class QWenModel(nn.Module):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.config = config
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.wte = VocabParallelEmbedding(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
self.start_layer, self.end_layer, self.h = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: QWenBlock(
|
|
config, cache_config, quant_config, prefix=prefix),
|
|
prefix=f"{prefix}.h")
|
|
self.ln_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
self.make_empty_intermediate_tensors = (
|
|
make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size))
|
|
|
|
if (vision_config := getattr(config, "visual", None)):
|
|
self.visual = VisionTransformer(**vision_config,
|
|
quant_config=quant_config)
|
|
else:
|
|
self.visual = None
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.wte(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors],
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.get_input_embeddings(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
for i in range(self.start_layer, self.end_layer):
|
|
layer = self.h[i]
|
|
hidden_states, residual = layer(
|
|
positions,
|
|
hidden_states,
|
|
kv_caches[i - self.start_layer],
|
|
attn_metadata,
|
|
residual,
|
|
)
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors({
|
|
"hidden_states": hidden_states,
|
|
"residual": residual
|
|
})
|
|
hidden_states, _ = self.ln_f(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
|
|
def build_normalization_transform(image_size: int) -> transforms.Compose:
|
|
"""
|
|
Build a normalization transform which can be applied to one or
|
|
more input images from which we want to extract visual features.
|
|
|
|
Args:
|
|
image_size: size of the image to be processed for visual embeddings.
|
|
|
|
Returns:
|
|
Callable transform for normalizing and resizing one RGB image.
|
|
"""
|
|
return transforms.Compose([
|
|
transforms.Resize((image_size, image_size),
|
|
interpolation=InterpolationMode.BICUBIC),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize(mean=CLIP_MEAN, std=CLIP_STD),
|
|
])
|
|
|
|
|
|
@lru_cache(maxsize=1)
|
|
def _get_tokenizer_without_image_pad(
|
|
tokenizer: PreTrainedTokenizer) -> PreTrainedTokenizer:
|
|
"""
|
|
The logic of adding image pad tokens should only be applied in
|
|
:class:`QWenVLProcessor`, so they are patched out here.
|
|
|
|
The definition of the wrapped tokenizer can be found here:
|
|
https://huggingface.co/Qwen/Qwen-VL/blob/main/tokenization_qwen.py
|
|
"""
|
|
new_tokenizer = copy.deepcopy(tokenizer)
|
|
|
|
class TokenizerWithoutImagePad(tokenizer.__class__): # type: ignore
|
|
|
|
def tokenize(
|
|
self,
|
|
text: str,
|
|
allowed_special: Union[AbstractSet[str], str] = "all",
|
|
disallowed_special: Union[Collection[str], str] = (),
|
|
**kwargs,
|
|
) -> list[Union[bytes, str]]:
|
|
text = unicodedata.normalize("NFC", text)
|
|
|
|
return [
|
|
self.decoder[t] for t in self.tokenizer.encode(
|
|
text,
|
|
allowed_special=allowed_special,
|
|
disallowed_special=disallowed_special,
|
|
)
|
|
]
|
|
|
|
def _decode(
|
|
self,
|
|
token_ids: Union[int, List[int]],
|
|
skip_special_tokens: bool = False,
|
|
errors: Optional[str] = None,
|
|
**kwargs,
|
|
) -> str:
|
|
if isinstance(token_ids, int):
|
|
token_ids = [token_ids]
|
|
|
|
return self.tokenizer.decode(
|
|
token_ids,
|
|
errors=errors or self.errors,
|
|
)
|
|
|
|
TokenizerWithoutImagePad.__name__ = \
|
|
f"{tokenizer.__class__.__name__}WithoutImagePad"
|
|
|
|
new_tokenizer.__class__ = TokenizerWithoutImagePad
|
|
return new_tokenizer
|
|
|
|
|
|
class QWenVLProcessor:
|
|
"""
|
|
This model doesn't define its own HF processor,
|
|
so we implement our own one here.
|
|
|
|
We call the wrapped tokenizer to automatically insert image pad tokens:
|
|
https://huggingface.co/Qwen/Qwen-VL/blob/main/tokenization_qwen.py#L245
|
|
|
|
The image processor is defined here:
|
|
https://huggingface.co/Qwen/Qwen-VL/blob/main/visual.py#L354
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
tokenizer: PreTrainedTokenizer,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.config = config
|
|
self.tokenizer = tokenizer
|
|
|
|
if hasattr(self.config, "visual"):
|
|
self.image_transform = build_normalization_transform(
|
|
config.visual["image_size"])
|
|
else:
|
|
self.image_transform = None
|
|
|
|
special_tokens: dict[str,
|
|
int] = tokenizer.special_tokens # type: ignore
|
|
self.img_start_id = special_tokens[IMG_START]
|
|
self.img_end_id = special_tokens[IMG_END]
|
|
|
|
def __call__(
|
|
self,
|
|
text: Optional[Union[TextInput, list[TextInput]]] = None,
|
|
images: Optional[Union[ImageInput, list[ImageInput]]] = None,
|
|
return_tensors: Optional[Union[str, TensorType]] = None,
|
|
) -> BatchFeature:
|
|
if text is None:
|
|
text = []
|
|
if not isinstance(text, list):
|
|
text = [text]
|
|
if images is None:
|
|
images = []
|
|
if not isinstance(images, list):
|
|
images = [images]
|
|
|
|
text_inputs = self.tokenizer(text)
|
|
|
|
if len(images) == 0:
|
|
image_inputs = {}
|
|
else:
|
|
if self.image_transform is None:
|
|
raise ValueError("This model does not support image inputs")
|
|
|
|
pixel_values = [self.image_transform(image) for image in images]
|
|
image_inputs = {"pixel_values": torch.stack(pixel_values)}
|
|
|
|
return BatchFeature(
|
|
{
|
|
**text_inputs,
|
|
**image_inputs,
|
|
},
|
|
tensor_type=return_tensors,
|
|
)
|
|
|
|
|
|
class QWenVLProcessingInfo(BaseProcessingInfo):
|
|
|
|
def get_tokenizer(self) -> PreTrainedTokenizer:
|
|
tokenizer = self.ctx.tokenizer
|
|
assert isinstance(tokenizer, PreTrainedTokenizer)
|
|
|
|
return _get_tokenizer_without_image_pad(tokenizer)
|
|
|
|
def get_hf_processor(self) -> QWenVLProcessor:
|
|
tokenizer = self.ctx.tokenizer
|
|
assert isinstance(tokenizer, PreTrainedTokenizer)
|
|
|
|
return QWenVLProcessor(self.get_hf_config(), tokenizer)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, Optional[int]]:
|
|
return {"image": None}
|
|
|
|
def get_mm_max_tokens_per_item(self, seq_len: int) -> Mapping[str, int]:
|
|
return {"image": self.get_num_image_tokens()}
|
|
|
|
def get_num_image_tokens(self) -> int:
|
|
return MAX_QWEN_IMG_TOKENS
|
|
|
|
|
|
class QWenVLDummyInputsBuilder(BaseDummyInputsBuilder[QWenVLProcessingInfo]):
|
|
|
|
def get_dummy_processor_inputs(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
) -> ProcessorInputs:
|
|
hf_config = self.info.get_hf_config()
|
|
if not hasattr(hf_config, "visual"):
|
|
return ProcessorInputs(prompt_text="", mm_data={})
|
|
|
|
vision_config = hf_config.visual
|
|
|
|
max_image_size = vision_config["image_size"]
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
mm_data = {
|
|
"image":
|
|
self._get_dummy_images(width=max_image_size,
|
|
height=max_image_size,
|
|
num_images=num_images)
|
|
}
|
|
|
|
return ProcessorInputs(
|
|
prompt_text="".join(f"Picture {i}: {IMG_START}{IMG_END}\n"
|
|
for i in range(1, num_images + 1)),
|
|
mm_data=mm_data,
|
|
)
|
|
|
|
|
|
class QWenVLMultiModalProcessor(BaseMultiModalProcessor[QWenVLProcessingInfo]):
|
|
|
|
def _call_hf_processor(
|
|
self,
|
|
prompt: str,
|
|
mm_data: Mapping[str, object],
|
|
mm_kwargs: Mapping[str, object],
|
|
) -> BatchFeature:
|
|
# Drops anything between <img>/</img> tags; encoding with the tokenizer
|
|
# will automatically add the image pads for the context.
|
|
prompt, num_matched_images = re.subn(
|
|
r"(Picture \d*: <img>).*?(<\/img>\n)",
|
|
r"\1\2",
|
|
prompt,
|
|
)
|
|
|
|
image_data = mm_data.get("images")
|
|
if image_data is not None:
|
|
assert isinstance(image_data, list)
|
|
|
|
num_images = len(image_data)
|
|
if num_matched_images != num_images:
|
|
logger.warning(
|
|
"Number of matched image placeholders %s doesn't match "
|
|
"the number of expected images %s; check your placeholder "
|
|
"formatting.", num_matched_images, num_images)
|
|
|
|
return super()._call_hf_processor(
|
|
prompt=prompt,
|
|
mm_data=mm_data,
|
|
mm_kwargs=mm_kwargs,
|
|
)
|
|
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.batched("image"),
|
|
image_embeds=MultiModalFieldConfig.batched("image"),
|
|
)
|
|
|
|
def _get_prompt_replacements(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
out_mm_kwargs: MultiModalKwargs,
|
|
) -> list[PromptReplacement]:
|
|
tokenizer = self.info.get_tokenizer()
|
|
special_tokens: dict[str,
|
|
int] = tokenizer.special_tokens # type: ignore
|
|
|
|
img_start_id = special_tokens[IMG_START]
|
|
img_end_id = special_tokens[IMG_END]
|
|
img_pad_id = special_tokens[IMG_PAD]
|
|
|
|
num_image_tokens = self.info.get_num_image_tokens()
|
|
image_tokens = [img_pad_id] * num_image_tokens
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=[img_start_id, img_end_id],
|
|
replacement=PromptReplacementDetails(
|
|
full=[img_start_id] + image_tokens + [img_end_id],
|
|
features=image_tokens,
|
|
),
|
|
)
|
|
]
|
|
|
|
|
|
class QWenBaseModel(nn.Module, SupportsPP, SupportsLoRA):
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
multimodal_config = vllm_config.model_config.multimodal_config
|
|
self.config = config
|
|
self.multimodal_config = multimodal_config
|
|
self.quant_config = quant_config
|
|
self.transformer = QWenModel(vllm_config=vllm_config,
|
|
prefix=maybe_prefix(
|
|
prefix, "transformer"))
|
|
self.lm_head = ParallelLMHead(config.vocab_size,
|
|
config.hidden_size,
|
|
quant_config=quant_config)
|
|
if self.config.tie_word_embeddings:
|
|
self.lm_head.weight = self.transformer.wte.weight
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.sampler = get_sampler()
|
|
self.make_empty_intermediate_tensors = (
|
|
self.transformer.make_empty_intermediate_tensors)
|
|
|
|
def _validate_pixel_values(self, data: torch.Tensor) -> torch.Tensor:
|
|
h = w = self.config.visual["image_size"]
|
|
expected_dims = (3, h, w)
|
|
actual_dims = tuple(data.shape[1:])
|
|
|
|
if actual_dims != expected_dims:
|
|
expected_expr = ("batch_size", *map(str, expected_dims))
|
|
raise ValueError(
|
|
f"The expected shape of pixel values is {expected_expr}. "
|
|
f"You supplied {tuple(data.shape)}.")
|
|
|
|
return data
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object) -> Optional[QwenImageInputs]:
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
image_embeds = kwargs.pop("image_embeds", None)
|
|
|
|
if pixel_values is not None:
|
|
if not isinstance(pixel_values, torch.Tensor):
|
|
raise ValueError("Incorrect type of pixel values. "
|
|
f"Got type: {type(pixel_values)}")
|
|
|
|
return QwenImagePixelInputs(
|
|
type="pixel_values",
|
|
data=self._validate_pixel_values(
|
|
flatten_bn(pixel_values, concat=True)),
|
|
)
|
|
|
|
if image_embeds is not None:
|
|
if not isinstance(image_embeds, torch.Tensor):
|
|
raise ValueError("Incorrect type of image embeddings. "
|
|
f"Got type: {type(image_embeds)}")
|
|
|
|
return QwenImageEmbeddingInputs(
|
|
type="image_embeds",
|
|
data=flatten_bn(image_embeds),
|
|
)
|
|
|
|
return None
|
|
|
|
def _process_image_input(self,
|
|
image_input: QwenImageInputs) -> torch.Tensor:
|
|
if image_input["type"] == "image_embeds":
|
|
return image_input["data"]
|
|
|
|
assert self.transformer.visual is not None
|
|
return self.transformer.visual(image_input["data"])
|
|
|
|
def get_multimodal_embeddings(self, **kwargs) -> Optional[NestedTensors]:
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return None
|
|
|
|
vision_embeddings = self._process_image_input(image_input)
|
|
return vision_embeddings
|
|
|
|
def get_input_embeddings(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
multimodal_embeddings: Optional[NestedTensors] = None,
|
|
) -> torch.Tensor:
|
|
inputs_embeds = self.transformer.get_input_embeddings(input_ids)
|
|
|
|
if multimodal_embeddings is not None:
|
|
assert self.transformer.visual is not None
|
|
inputs_embeds = merge_multimodal_embeddings(
|
|
input_ids, inputs_embeds, multimodal_embeddings,
|
|
self.transformer.visual.image_pad_id)
|
|
|
|
return inputs_embeds
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: List[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
**kwargs: object,
|
|
) -> Union[torch.Tensor, IntermediateTensors]:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
# NOTE: In v1, inputs_embeds is always generated at model runner, this
|
|
# condition is for v0 compatibility.
|
|
elif inputs_embeds is None:
|
|
vision_embeddings = self.get_multimodal_embeddings(**kwargs)
|
|
inputs_embeds = self.get_input_embeddings(input_ids,
|
|
vision_embeddings)
|
|
input_ids = None
|
|
|
|
hidden_states = self.transformer(input_ids, positions, kv_caches,
|
|
attn_metadata, intermediate_tensors,
|
|
inputs_embeds)
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[torch.Tensor]:
|
|
logits = self.logits_processor(self.lm_head, hidden_states,
|
|
sampling_metadata)
|
|
return logits
|
|
|
|
def sample(
|
|
self,
|
|
logits: torch.Tensor,
|
|
sampling_metadata: SamplingMetadata,
|
|
) -> Optional[SamplerOutput]:
|
|
next_tokens = self.sampler(logits, sampling_metadata)
|
|
return next_tokens
|
|
|
|
def load_weights(self, weights: Iterable[Tuple[str,
|
|
torch.Tensor]]) -> Set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("gate_up_proj", "w2", 0),
|
|
("gate_up_proj", "w1", 1),
|
|
]
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: Set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
for (param_name, weight_name, shard_id) in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Skip layers on other devices.
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader",
|
|
default_weight_loader)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class QWenLLM(QWenBaseModel):
|
|
packed_modules_mapping = {
|
|
"c_attn": ["c_attn"],
|
|
"gate_up_proj": [
|
|
"w2",
|
|
"w1",
|
|
],
|
|
}
|
|
# LoRA specific attributes
|
|
supported_lora_modules = [
|
|
"c_attn",
|
|
"gate_up_proj",
|
|
"c_proj",
|
|
]
|
|
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
|
|
class QWenVL(QWenBaseModel, SupportsMultiModal):
|
|
packed_modules_mapping = {
|
|
"c_attn": ["c_attn"],
|
|
"gate_up_proj": [
|
|
"w2",
|
|
"w1",
|
|
],
|
|
}
|
|
# LoRA specific attributes
|
|
supported_lora_modules = [
|
|
"c_attn",
|
|
"gate_up_proj",
|
|
"c_proj",
|
|
# visual module
|
|
"out_proj",
|
|
"in_proj",
|
|
"c_fc",
|
|
# resampler
|
|
"kv_proj",
|
|
]
|
|
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
def get_mm_mapping(self) -> MultiModelKeys:
|
|
"""
|
|
Get the module prefix in multimodal models
|
|
"""
|
|
return MultiModelKeys.from_string_field(
|
|
language_model="transformer.h",
|
|
connector="transformer.visual.attn_pool",
|
|
tower_model="transformer.visual.transformer")
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(QWenVLMultiModalProcessor,
|
|
info=QWenVLProcessingInfo,
|
|
dummy_inputs=QWenVLDummyInputsBuilder)
|
|
class QWenLMHeadModel(QWenBaseModel, SupportsMultiModal, SupportsLoRA):
|
|
"""
|
|
QWenLMHeadModel is not only applicable to LLM but also to VL, which is not
|
|
conducive to the current integration logic of LoRA in vLLM. Therefore, it
|
|
is necessary to separate them.
|
|
"""
|
|
# Ensure that the LoRA support check passes when the class is not
|
|
# initialized, but set all these attributes to empty.
|
|
packed_modules_mapping = {}
|
|
supported_lora_modules = []
|
|
embedding_modules = {}
|
|
embedding_padding_modules = []
|
|
|
|
def __new__(
|
|
cls,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
) -> QWenBaseModel:
|
|
config = vllm_config.model_config.hf_config
|
|
# Initialize VL
|
|
if hasattr(config, "visual"):
|
|
return QWenVL(vllm_config=vllm_config, prefix=prefix)
|
|
# Initialize LLM
|
|
else:
|
|
return QWenLLM(vllm_config=vllm_config, prefix=prefix)
|