mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-22 00:16:03 +08:00
191 lines
5.6 KiB
Python
191 lines
5.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""
|
|
Usage:
|
|
Single node:
|
|
python examples/offline_inference/data_parallel.py \
|
|
--model="ibm-research/PowerMoE-3b" \
|
|
-dp=2 \
|
|
-tp=2
|
|
|
|
Multi-node:
|
|
Node 0 (assume the node has ip of 10.99.48.128):
|
|
python examples/offline_inference/data_parallel.py \
|
|
--model="ibm-research/PowerMoE-3b" \
|
|
-dp=2 \
|
|
-tp=2 \
|
|
--nnodes=2 \
|
|
--node-rank=0 \
|
|
--master-addr=10.99.48.128 \
|
|
--master-port=13345
|
|
Node 1:
|
|
python examples/offline_inference/data_parallel.py \
|
|
--model="ibm-research/PowerMoE-3b" \
|
|
-dp=2 \
|
|
-tp=2 \
|
|
--nnodes=2 \
|
|
--node-rank=1 \
|
|
--master-addr=10.99.48.128 \
|
|
--master-port=13345
|
|
"""
|
|
|
|
import os
|
|
from time import sleep
|
|
|
|
from vllm import LLM, EngineArgs, SamplingParams
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils.argparse_utils import FlexibleArgumentParser
|
|
from vllm.utils.network_utils import get_open_port
|
|
|
|
|
|
def create_parser():
|
|
parser = FlexibleArgumentParser(description="Data Parallel Inference")
|
|
|
|
# Add all engine args
|
|
EngineArgs.add_cli_args(parser)
|
|
parser.set_defaults(
|
|
model="ibm-research/PowerMoE-3b",
|
|
enable_expert_parallel=True,
|
|
)
|
|
|
|
# Add timeout (not in EngineArgs)
|
|
parser.add_argument(
|
|
"--timeout",
|
|
type=int,
|
|
default=300,
|
|
help="Number of seconds before unresponsive process is killed.",
|
|
)
|
|
|
|
return parser
|
|
|
|
|
|
def main(
|
|
dp_size,
|
|
local_dp_rank,
|
|
global_dp_rank,
|
|
dp_master_ip,
|
|
dp_master_port,
|
|
engine_args,
|
|
):
|
|
os.environ["VLLM_DP_RANK"] = str(global_dp_rank)
|
|
os.environ["VLLM_DP_RANK_LOCAL"] = str(local_dp_rank)
|
|
os.environ["VLLM_DP_SIZE"] = str(dp_size)
|
|
os.environ["VLLM_DP_MASTER_IP"] = dp_master_ip
|
|
os.environ["VLLM_DP_MASTER_PORT"] = str(dp_master_port)
|
|
|
|
# CUDA_VISIBLE_DEVICES for each DP rank is set automatically inside the
|
|
# engine processes.
|
|
|
|
# Sample prompts.
|
|
prompts = [
|
|
"Hello, my name is",
|
|
"The president of the United States is",
|
|
"The capital of France is",
|
|
"The future of AI is",
|
|
] * 100
|
|
|
|
# with DP, each rank should process different prompts.
|
|
# usually all the DP ranks process a full dataset,
|
|
# and each rank processes a different part of the dataset.
|
|
floor = len(prompts) // dp_size
|
|
remainder = len(prompts) % dp_size
|
|
|
|
# Distribute prompts into even groups.
|
|
def start(rank):
|
|
return rank * floor + min(rank, remainder)
|
|
|
|
prompts = prompts[start(global_dp_rank) : start(global_dp_rank + 1)]
|
|
if len(prompts) == 0:
|
|
# if any rank has no prompts to process,
|
|
# we need to set a placeholder prompt
|
|
prompts = ["Placeholder"]
|
|
print(f"DP rank {global_dp_rank} needs to process {len(prompts)} prompts")
|
|
|
|
# Create a sampling params object.
|
|
# since we are doing data parallel, every rank can have different
|
|
# sampling params. here we set different max_tokens for different
|
|
# ranks for demonstration.
|
|
sampling_params = SamplingParams(
|
|
temperature=0.8, top_p=0.95, max_tokens=[16, 20][global_dp_rank % 2]
|
|
)
|
|
|
|
# Create an LLM.
|
|
llm = LLM(**engine_args)
|
|
outputs = llm.generate(prompts, sampling_params)
|
|
# Print the outputs.
|
|
for i, output in enumerate(outputs):
|
|
if i >= 5:
|
|
# print only 5 outputs
|
|
break
|
|
prompt = output.prompt
|
|
generated_text = output.outputs[0].text
|
|
print(
|
|
f"DP rank {global_dp_rank}, Prompt: {prompt!r}, "
|
|
f"Generated text: {generated_text!r}"
|
|
)
|
|
|
|
# Give engines time to pause their processing loops before exiting.
|
|
sleep(1)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = create_parser()
|
|
args = vars(parser.parse_args())
|
|
|
|
# Extract DP-specific args
|
|
dp_size = args.pop("data_parallel_size")
|
|
nnodes = args.get("nnodes", 1)
|
|
node_rank = args.get("node_rank", 0)
|
|
master_addr = args.get("master_addr", "")
|
|
master_port = args.get("master_port", 0)
|
|
timeout = args.pop("timeout")
|
|
|
|
# Remaining args are engine args
|
|
engine_args = args
|
|
|
|
if nnodes == 1:
|
|
dp_master_ip = "127.0.0.1"
|
|
dp_master_port = get_open_port()
|
|
else:
|
|
dp_master_ip = master_addr
|
|
dp_master_port = master_port
|
|
|
|
assert dp_size % nnodes == 0, "dp_size should be divisible by nnodes"
|
|
dp_per_node = dp_size // nnodes
|
|
|
|
from multiprocessing import Process
|
|
|
|
if current_platform.is_rocm():
|
|
from multiprocessing import set_start_method
|
|
|
|
set_start_method("spawn", force=True)
|
|
|
|
procs = []
|
|
for local_dp_rank, global_dp_rank in enumerate(
|
|
range(node_rank * dp_per_node, (node_rank + 1) * dp_per_node)
|
|
):
|
|
proc = Process(
|
|
target=main,
|
|
args=(
|
|
dp_size,
|
|
local_dp_rank,
|
|
global_dp_rank,
|
|
dp_master_ip,
|
|
dp_master_port,
|
|
engine_args,
|
|
),
|
|
)
|
|
proc.start()
|
|
procs.append(proc)
|
|
exit_code = 0
|
|
for proc in procs:
|
|
proc.join(timeout=timeout)
|
|
if proc.exitcode is None:
|
|
print(f"Killing process {proc.pid} that didn't stop within 5 minutes.")
|
|
proc.kill()
|
|
exit_code = 1
|
|
elif proc.exitcode:
|
|
exit_code = proc.exitcode
|
|
|
|
exit(exit_code)
|