vllm/csrc/moe/permute_unpermute_kernels/moe_permute_unpermute_kernel.cu
Caleb_Du 57c22e57f9
Fix CUDA permute/unpermute for use with DeepGemm Moe (#17934)
Signed-off-by: Caleb_Du <Caleb_Du@zju.edu.cn>
2025-07-27 07:08:00 -07:00

232 lines
9.4 KiB
Plaintext

#include "moe_permute_unpermute_kernel.h"
// moe_permute kernels require at least CUDA 12.0
#if defined(CUDA_VERSION) && (CUDA_VERSION >= 12000)
// CubKeyValueSorter definition begin
CubKeyValueSorter::CubKeyValueSorter()
: num_experts_(0), num_bits_(sizeof(int) * 8) {}
int CubKeyValueSorter::expertsToBits(int num_experts) {
// Max value we represent is V = num_experts + (num_experts - 1) = 2 *
// num_experts - 1 The maximum number of bits is therefore floor(log2(V)) + 1
return static_cast<int>(log2(2 * num_experts - 1)) + 1;
}
CubKeyValueSorter::CubKeyValueSorter(int const num_experts)
: num_experts_(num_experts), num_bits_(expertsToBits(num_experts)) {}
void CubKeyValueSorter::updateNumExperts(int const num_experts) {
num_experts_ = num_experts;
num_bits_ = expertsToBits(num_experts);
}
size_t CubKeyValueSorter::getWorkspaceSize(size_t const num_key_value_pairs,
int const num_experts) {
int num_bits = expertsToBits(num_experts);
size_t required_storage = 0;
int* null_int = nullptr;
cub::DeviceRadixSort::SortPairs(nullptr, required_storage, null_int, null_int,
null_int, null_int, num_key_value_pairs, 0,
num_bits);
// when num_key_value_pairs, num_experts, num_bits, required_storage = 64,
// 4, 3, 0 The required_storage seems to vary between 0 and 1 for the same
// inputs
if (required_storage == 0) {
required_storage = 1;
}
return required_storage;
}
void CubKeyValueSorter::run(void* workspace, size_t const workspace_size,
int const* keys_in, int* keys_out,
int const* values_in, int* values_out,
size_t const num_key_value_pairs,
cudaStream_t stream) {
size_t expected_ws_size = getWorkspaceSize(num_key_value_pairs, num_experts_);
size_t actual_ws_size = workspace_size;
TORCH_CHECK(expected_ws_size <= workspace_size,
"[CubKeyValueSorter::run] The allocated workspace is too small "
"to run this problem.");
cub::DeviceRadixSort::SortPairs(workspace, actual_ws_size, keys_in, keys_out,
values_in, values_out, num_key_value_pairs, 0,
num_bits_, stream);
}
// CubKeyValueSorter definition end
static inline size_t pad_to_multiple_of_16(size_t const& input) {
static constexpr int ALIGNMENT = 16;
return ALIGNMENT * ((input + ALIGNMENT - 1) / ALIGNMENT);
}
template <class T>
__device__ inline int64_t findTotalEltsLessThanTarget(T const* sorted_indices,
int64_t const arr_length,
T const target) {
int64_t low = 0, high = arr_length - 1, target_location = -1;
while (low <= high) {
int64_t mid = (low + high) / 2;
if (sorted_indices[mid] >= target) {
high = mid - 1;
} else {
low = mid + 1;
target_location = mid;
}
}
return target_location + 1;
}
// Calculates the start offset of the tokens for a given expert. The last
// element is the total number of valid tokens
__global__ void computeExpertFirstTokenOffsetKernel(
int const* sorted_experts, int64_t const sorted_experts_len,
int const num_experts, int64_t* expert_first_token_offset) {
// First, compute the global tid. We only need 1 thread per expert.
int const expert = blockIdx.x * blockDim.x + threadIdx.x;
// Note that expert goes [0, num_experts] (inclusive) because we want a count
// for the total number of active tokens at the end of the scan.
if (expert >= num_experts + 1) {
return;
}
expert_first_token_offset[expert] =
findTotalEltsLessThanTarget(sorted_experts, sorted_experts_len, expert);
}
void computeExpertFirstTokenOffset(int const* sorted_indices,
int const total_indices,
int const num_experts,
int64_t* expert_first_token_offset,
cudaStream_t stream) {
int const num_entries = num_experts + 1;
int const threads = std::min(1024, num_entries);
int const blocks = (num_entries + threads - 1) / threads;
computeExpertFirstTokenOffsetKernel<<<blocks, threads, 0, stream>>>(
sorted_indices, total_indices, num_experts, expert_first_token_offset);
}
void sortAndScanExpert(int* expert_for_source_row, const int* source_rows,
int* permuted_experts, int* permuted_rows,
int64_t* expert_first_token_offset, int num_rows,
int num_experts, int num_experts_per_node, int k,
CubKeyValueSorter& sorter, void* sorter_ws,
cudaStream_t stream) {
int64_t const expanded_num_rows = static_cast<int64_t>(k) * num_rows;
// We need to use the full num_experts because that is the sentinel value used
// by topk for disabled experts
sorter.updateNumExperts(num_experts);
size_t const sorter_ws_size_bytes = pad_to_multiple_of_16(
sorter.getWorkspaceSize(expanded_num_rows, num_experts));
sorter.run((void*)sorter_ws, sorter_ws_size_bytes, expert_for_source_row,
permuted_experts, source_rows, permuted_rows, expanded_num_rows,
stream);
computeExpertFirstTokenOffset(permuted_experts, expanded_num_rows,
num_experts_per_node, expert_first_token_offset,
stream);
}
__global__ void preprocessTopkIdKernel(int* topk_id_ptr, int size,
const int* expert_map_ptr,
int num_experts) {
auto tidx = threadIdx.x;
auto bidx = blockIdx.x;
auto offset = bidx * blockDim.x;
auto bound = min(offset + blockDim.x, size);
extern __shared__ int smem_expert_map[];
// store expert_map in smem
for (int i = tidx; i < num_experts; i += blockDim.x) {
smem_expert_map[i] = expert_map_ptr[i];
}
__syncthreads();
// query global expert id in expert map.
// if global expert id = -1 in exert map, plus n_expert
// else set global expert id = exert map[global expert id]
if (offset + tidx < bound) {
auto topk_id = topk_id_ptr[offset + tidx];
auto local_expert_idx = smem_expert_map[topk_id];
if (local_expert_idx == -1) {
topk_id += num_experts;
} else {
topk_id = local_expert_idx;
}
__syncwarp();
topk_id_ptr[offset + tidx] = topk_id;
}
}
void preprocessTopkIdLauncher(int* topk_id_ptr, int size,
const int* expert_map_ptr, int num_experts,
cudaStream_t stream) {
int block = std::min(size, 1024);
int grid = (size + block - 1) / block;
int smem_size = (num_experts) * sizeof(int);
preprocessTopkIdKernel<<<grid, block, smem_size, stream>>>(
topk_id_ptr, size, expert_map_ptr, num_experts);
}
template <bool ALIGN_BLOCK_SIZE>
__global__ void getMIndicesKernel(int64_t* expert_first_token_offset,
int64_t* align_expert_first_token_offset,
int* m_indices, const int num_local_expert,
const int align_block_size) {
int eidx = blockIdx.x;
int tidx = threadIdx.x;
extern __shared__ int64_t smem_expert_first_token_offset[];
for (int i = tidx; i <= num_local_expert; i += blockDim.x) {
smem_expert_first_token_offset[i] = __ldg(expert_first_token_offset + i);
}
__syncthreads();
auto last_token_offset = smem_expert_first_token_offset[eidx + 1];
auto first_token_offset = smem_expert_first_token_offset[eidx];
int n_token_in_expert = last_token_offset - first_token_offset;
if constexpr (ALIGN_BLOCK_SIZE) {
n_token_in_expert = (n_token_in_expert + align_block_size - 1) /
align_block_size * align_block_size;
// round up to ALIGN_BLOCK_SIZE
int64_t accumulate_align_offset = 0;
for (int i = 1; i <= eidx + 1; i++) {
int n_token = smem_expert_first_token_offset[i] -
smem_expert_first_token_offset[i - 1];
accumulate_align_offset =
accumulate_align_offset + (n_token + align_block_size - 1) /
align_block_size * align_block_size;
if (i == eidx) {
first_token_offset = accumulate_align_offset;
}
// last block store align_expert_first_token_offset
if (eidx == num_local_expert - 1 && threadIdx.x == 0) {
align_expert_first_token_offset[i] = accumulate_align_offset;
}
}
}
for (int idx = tidx; idx < n_token_in_expert; idx += blockDim.x) {
// update m_indice with expert id
m_indices[first_token_offset + idx] = eidx;
}
}
void getMIndices(int64_t* expert_first_token_offset,
int64_t* align_expert_first_token_offset, int* m_indices,
int num_local_expert, const int align_block_size,
cudaStream_t stream) {
int block = 256;
int grid = num_local_expert;
int smem_size = sizeof(int64_t) * (num_local_expert + 1);
if (align_block_size == -1) {
getMIndicesKernel<false><<<grid, block, smem_size, stream>>>(
expert_first_token_offset, align_expert_first_token_offset, m_indices,
num_local_expert, align_block_size);
} else {
getMIndicesKernel<true><<<grid, block, smem_size, stream>>>(
expert_first_token_offset, align_expert_first_token_offset, m_indices,
num_local_expert, align_block_size);
}
}
#endif