vllm/csrc/quantization/fp4/nvfp4_experts_quant.cu
Tyler Michael Smith e8c3bd2cd1
[Bugfix] Fix some narrowing conversion warnings (#20141)
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-06-27 09:01:28 -07:00

583 lines
22 KiB
Plaintext

#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <cuda_runtime.h>
#include <cuda_fp8.h>
template <typename T>
struct TypeConverter {
using Type = half2;
}; // keep for generality
template <>
struct TypeConverter<half2> {
using Type = half;
};
template <>
struct TypeConverter<half> {
using Type = half2;
};
template <>
struct TypeConverter<__nv_bfloat162> {
using Type = __nv_bfloat16;
};
template <>
struct TypeConverter<__nv_bfloat16> {
using Type = __nv_bfloat162;
};
#define ELTS_PER_THREAD 8
constexpr int CVT_FP4_ELTS_PER_THREAD = 8;
constexpr int CVT_FP4_SF_VEC_SIZE = 16;
// Convert 8 float32 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float (&array)[8]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0]), "f"(array[1]), "f"(array[2]), "f"(array[3]),
"f"(array[4]), "f"(array[5]), "f"(array[6]), "f"(array[7]));
return val;
#else
return 0;
#endif
}
// Convert 4 float2 values into 8 e2m1 values (represented as one uint32_t).
inline __device__ uint32_t fp32_vec_to_e2m1(float2 (&array)[4]) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
uint32_t val;
asm volatile(
"{\n"
".reg .b8 byte0;\n"
".reg .b8 byte1;\n"
".reg .b8 byte2;\n"
".reg .b8 byte3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte0, %2, %1;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte1, %4, %3;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte2, %6, %5;\n"
"cvt.rn.satfinite.e2m1x2.f32 byte3, %8, %7;\n"
"mov.b32 %0, {byte0, byte1, byte2, byte3};\n"
"}"
: "=r"(val)
: "f"(array[0].x), "f"(array[0].y), "f"(array[1].x), "f"(array[1].y),
"f"(array[2].x), "f"(array[2].y), "f"(array[3].x), "f"(array[3].y));
return val;
#else
return 0;
#endif
}
// Fast reciprocal.
inline __device__ float reciprocal_approximate_ftz(float a) {
float b;
asm volatile("rcp.approx.ftz.f32 %0, %1;\n" : "=f"(b) : "f"(a));
return b;
}
template <class SFType, int CVT_FP4_NUM_THREADS_PER_SF>
__device__ uint8_t* cvt_quant_to_fp4_get_sf_out_offset(int rowIdx, int colIdx,
int numCols,
SFType* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
static_assert(CVT_FP4_NUM_THREADS_PER_SF == 1 ||
CVT_FP4_NUM_THREADS_PER_SF == 2);
// One pair of threads write one SF to global memory.
// TODO: stage through smem for packed STG.32
// is it better than STG.8 from 4 threads ?
if (threadIdx.x % CVT_FP4_NUM_THREADS_PER_SF == 0) {
// SF vector index (16 elements share one SF in the K dimension).
int32_t kIdx = colIdx / CVT_FP4_NUM_THREADS_PER_SF;
int32_t mIdx = rowIdx;
// SF layout [numMTiles, numKTiles, 32 (mTile), 4 (mTile), 4(kTile)]
// --> index [mTileIdx, kTileIdx, outerMIdx, innerMIdx, innerKIdx]
int32_t mTileIdx = mIdx / (32 * 4);
// SF vector size 16.
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numKTiles = (numCols + factor - 1) / factor;
int64_t mTileStride = numKTiles * 32 * 4 * 4;
int32_t kTileIdx = (kIdx / 4);
int64_t kTileStride = 32 * 4 * 4;
// M tile layout [32, 4] is column-major.
int32_t outerMIdx = (mIdx % 32);
int64_t outerMStride = 4 * 4;
int32_t innerMIdx = (mIdx % (32 * 4)) / 32;
int64_t innerMStride = 4;
int32_t innerKIdx = (kIdx % 4);
int64_t innerKStride = 1;
// Compute the global offset.
int64_t SFOffset = mTileIdx * mTileStride + kTileIdx * kTileStride +
outerMIdx * outerMStride + innerMIdx * innerMStride +
innerKIdx * innerKStride;
return reinterpret_cast<uint8_t*>(SFout) + SFOffset;
}
#endif
return nullptr;
}
// Define a 16 bytes packed data type.
template <class Type>
struct PackedVec {
typename TypeConverter<Type>::Type elts[4];
};
template <>
struct PackedVec<__nv_fp8_e4m3> {
__nv_fp8x2_e4m3 elts[8];
};
// Quantizes the provided PackedVec into the uint32_t output
template <class Type, bool UE8M0_SF = false>
__device__ uint32_t cvt_warp_fp16_to_fp4(PackedVec<Type>& vec, float SFScaleVal,
uint8_t* SFout) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
// Get absolute maximum values among the local 8 values.
auto localMax = __habs2(vec.elts[0]);
// Local maximum value.
#pragma unroll
for (int i = 1; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
localMax = __hmax2(localMax, __habs2(vec.elts[i]));
}
// Get the absolute maximum among all 16 values (two threads).
localMax = __hmax2(__shfl_xor_sync(uint32_t(-1), localMax, 1), localMax);
// Get the final absolute maximum values.
float vecMax = float(__hmax(localMax.x, localMax.y));
// Get the SF (max value of the vector / max value of e2m1).
// maximum value of e2m1 = 6.0.
// TODO: use half as compute data type.
float SFValue = SFScaleVal * (vecMax * reciprocal_approximate_ftz(6.0f));
// 8 bits representation of the SF.
uint8_t fp8SFVal;
// Write the SF to global memory (STG.8).
if constexpr (UE8M0_SF) {
// Extract the 8 exponent bits from float32.
// float 32bits = 1 sign bit + 8 exponent bits + 23 mantissa bits.
uint32_t tmp = reinterpret_cast<uint32_t&>(SFValue) >> 23;
fp8SFVal = tmp & 0xff;
// Convert back to fp32.
reinterpret_cast<uint32_t&>(SFValue) = tmp << 23;
} else {
// Here SFValue is always positive, so E4M3 is the same as UE4M3.
__nv_fp8_e4m3 tmp = __nv_fp8_e4m3(SFValue);
reinterpret_cast<__nv_fp8_e4m3&>(fp8SFVal) = tmp;
// Convert back to fp32.
SFValue = float(tmp);
}
// Get the output scale.
// Recipe: final_scale = reciprocal(fp32(fp8(SFValue * SFScaleVal))) *
// reciprocal(SFScaleVal))
float outputScale =
SFValue != 0 ? reciprocal_approximate_ftz(
SFValue * reciprocal_approximate_ftz(SFScaleVal))
: 0.0f;
if (SFout) {
// Write the SF to global memory (STG.8).
*SFout = fp8SFVal;
}
// Convert the input to float.
float2 fp2Vals[CVT_FP4_ELTS_PER_THREAD / 2];
#pragma unroll
for (int i = 0; i < CVT_FP4_ELTS_PER_THREAD / 2; i++) {
if constexpr (std::is_same_v<Type, half>) {
fp2Vals[i] = __half22float2(vec.elts[i]);
} else {
fp2Vals[i] = __bfloat1622float2(vec.elts[i]);
}
fp2Vals[i].x *= outputScale;
fp2Vals[i].y *= outputScale;
}
// Convert to e2m1 values.
uint32_t e2m1Vec = fp32_vec_to_e2m1(fp2Vals);
// Write the e2m1 values to global memory.
return e2m1Vec;
#else
return 0;
#endif
}
// Use UE4M3 by default.
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(512, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts, bool low_latency) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD,
"Vec size is not matched.");
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int colsPerRow = numCols / CVT_FP4_ELTS_PER_THREAD;
// Each global thread processes one element
for (int globalIdx = tid; globalIdx < numRows * colsPerRow;
globalIdx += gridDim.x * blockDim.x) {
// Calculate which row and column this global thread should process
int rowIdx = globalIdx / colsPerRow;
int colIdx = globalIdx % colsPerRow;
int64_t inOffset = rowIdx * colsPerRow + colIdx;
PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
// Get the output tensor offset.
// Same as inOffset because 8 elements are packed into one uint32_t.
int64_t outOffset = inOffset;
auto& out_pos = out[outOffset];
// Find index within the experts using different strategies based on expert
// count
int rowIdx_in_expert = 0;
int expert_idx = 0;
if constexpr (SMALL_NUM_EXPERTS) {
for (int i = 0; i < n_experts; i++) {
uint32_t current_offset = __ldca(&input_offset_by_experts[i]);
uint32_t next_offset = __ldca(&input_offset_by_experts[i + 1]);
if (rowIdx >= current_offset && rowIdx < next_offset) {
rowIdx_in_expert = rowIdx - current_offset;
expert_idx = i;
break;
}
}
} else {
// Load input offsets into registers first, then do the computation.
// Local array size set to 17 because of register limit.
uint32_t local_offsets[17];
for (int chunk_start = 0; chunk_start < n_experts; chunk_start += 16) {
*reinterpret_cast<int4*>(local_offsets) =
__ldca(reinterpret_cast<const int4*>(
&input_offset_by_experts[chunk_start]));
*reinterpret_cast<int4*>(local_offsets + 4) =
__ldca(reinterpret_cast<const int4*>(
&input_offset_by_experts[chunk_start + 4]));
*reinterpret_cast<int4*>(local_offsets + 8) =
__ldca(reinterpret_cast<const int4*>(
&input_offset_by_experts[chunk_start + 8]));
*reinterpret_cast<int4*>(local_offsets + 12) =
__ldca(reinterpret_cast<const int4*>(
&input_offset_by_experts[chunk_start + 12]));
local_offsets[16] = __ldca(&input_offset_by_experts[chunk_start + 16]);
// Check against the 16 loaded offsets
#pragma unroll
for (int i = 0; i < 16; i++) {
if (rowIdx >= local_offsets[i] && rowIdx < local_offsets[i + 1]) {
rowIdx_in_expert = rowIdx - local_offsets[i];
expert_idx = chunk_start + i;
break;
}
}
}
}
// Get the global scaling factor, which will be applied to the SF.
// Note SFScale is the same as next GEMM's alpha, which is
// (448.f / (Alpha_A / 6.f)).
float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[expert_idx];
int factor = CVT_FP4_SF_VEC_SIZE * 4;
// The actual output_scales dim is computed from the padded numCols.
int32_t numCols_padded = (numCols + factor - 1) / factor * factor;
int numCols_SFout = numCols_padded / CVT_FP4_SF_VEC_SIZE / 4;
uint32_t* SFout_in_expert =
SFout + output_scale_offset_by_experts[expert_idx] * numCols_SFout;
auto sf_out =
cvt_quant_to_fp4_get_sf_out_offset<uint32_t,
CVT_FP4_NUM_THREADS_PER_SF>(
rowIdx_in_expert, colIdx, numCols, SFout_in_expert);
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
#endif
}
// Kernel for LARGE_M_TOPK = true (large m_topk optimized version)
template <class Type, bool UE8M0_SF = false, bool SMALL_NUM_EXPERTS = false>
__global__ void
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
__launch_bounds__(1024, 4) cvt_fp16_to_fp4(
#else
cvt_fp16_to_fp4(
#endif
int32_t numRows, int32_t numCols, Type const* in, float const* SFScale,
uint32_t* out, uint32_t* SFout, uint32_t* input_offset_by_experts,
uint32_t* output_scale_offset_by_experts, int n_experts) {
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 1000)
using PackedVec = PackedVec<Type>;
static constexpr int CVT_FP4_NUM_THREADS_PER_SF =
(CVT_FP4_SF_VEC_SIZE / CVT_FP4_ELTS_PER_THREAD);
static_assert(sizeof(PackedVec) == sizeof(Type) * CVT_FP4_ELTS_PER_THREAD,
"Vec size is not matched.");
extern __shared__ uint32_t shared_input_offsets[];
// Load input offsets into shared memory.
// If n_experts is larger than 4, use vectorized int4 to save instructions.
// If n_experts is smaller than 4, read directly.
if constexpr (SMALL_NUM_EXPERTS) {
for (int i = threadIdx.x; i < n_experts + 1; i += blockDim.x) {
shared_input_offsets[i] = input_offset_by_experts[i];
}
} else {
for (int i = threadIdx.x * 4; i < n_experts; i += blockDim.x * 4) {
*reinterpret_cast<int4*>(&shared_input_offsets[i]) =
*reinterpret_cast<const int4*>(&input_offset_by_experts[i]);
}
if (threadIdx.x == 0) {
shared_input_offsets[n_experts] = input_offset_by_experts[n_experts];
}
}
__syncthreads();
int tid = blockIdx.x * blockDim.x + threadIdx.x;
int colsPerRow = numCols / CVT_FP4_ELTS_PER_THREAD;
// Each global thread processes one element
for (int globalIdx = tid; globalIdx < numRows * colsPerRow;
globalIdx += gridDim.x * blockDim.x) {
// Calculate which row and column this global thread should process
int rowIdx = globalIdx / colsPerRow;
int colIdx = globalIdx % colsPerRow;
int64_t inOffset = rowIdx * colsPerRow + colIdx;
PackedVec in_vec = reinterpret_cast<PackedVec const*>(in)[inOffset];
int64_t outOffset = inOffset;
auto& out_pos = out[outOffset];
// Find expert using binary search for better performance with large m_topk
int rowIdx_in_expert = 0;
int expert_idx = 0;
// Binary search through experts using shared memory
int left = 0, right = n_experts - 1;
while (left <= right) {
int mid = (left + right) / 2;
// Get offsets: shared_input_offsets[i] corresponds to
// input_offset_by_experts[i]
uint32_t mid_offset = shared_input_offsets[mid];
uint32_t next_offset = shared_input_offsets[mid + 1];
if (rowIdx >= mid_offset && rowIdx < next_offset) {
rowIdx_in_expert = rowIdx - mid_offset;
expert_idx = mid;
break;
} else if (rowIdx < mid_offset) {
right = mid - 1;
} else {
left = mid + 1;
}
}
float const SFScaleVal = SFScale == nullptr ? 1.0f : SFScale[expert_idx];
int factor = CVT_FP4_SF_VEC_SIZE * 4;
int32_t numCols_padded = (numCols + factor - 1) / factor * factor;
int numCols_SFout = numCols_padded / CVT_FP4_SF_VEC_SIZE / 4;
uint32_t* SFout_in_expert =
SFout + output_scale_offset_by_experts[expert_idx] * numCols_SFout;
auto sf_out =
cvt_quant_to_fp4_get_sf_out_offset<uint32_t,
CVT_FP4_NUM_THREADS_PER_SF>(
rowIdx_in_expert, colIdx, numCols, SFout_in_expert);
out_pos = cvt_warp_fp16_to_fp4<Type, UE8M0_SF>(in_vec, SFScaleVal, sf_out);
}
#endif
}
template <typename T>
void quant_impl(void* output, void* output_scale, void* input,
void* input_global_scale, void* input_offset_by_experts,
void* output_scale_offset_by_experts, int m_topk, int k,
int n_experts, cudaStream_t stream) {
// TODO: this multiProcessorCount should be cached.
int device;
cudaGetDevice(&device);
int multiProcessorCount;
cudaDeviceGetAttribute(&multiProcessorCount, cudaDevAttrMultiProcessorCount,
device);
// Grid, Block size.
// Each thread converts 8 values.
int const workSizePerRow = k / ELTS_PER_THREAD;
int const totalWorkSize = m_topk * workSizePerRow;
dim3 block(std::min(workSizePerRow, 512));
// Get number of blocks per SM (assume we can fully utilize the SM).
int const numBlocksPerSM = 2048 / block.x;
dim3 grid(std::min(static_cast<int>((totalWorkSize + block.x - 1) / block.x),
multiProcessorCount * numBlocksPerSM));
while (grid.x <= multiProcessorCount && block.x > 64) {
grid.x *= 2;
block.x = (block.x + 1) / 2;
}
int const blockRepeat =
(totalWorkSize + block.x * grid.x - 1) / (block.x * grid.x);
if (blockRepeat > 1) {
size_t shared_mem_size = (n_experts + 1) * sizeof(uint32_t);
if (n_experts >= 4) {
cvt_fp16_to_fp4<T, false, false>
<<<grid, block, shared_mem_size, stream>>>(
m_topk, k, reinterpret_cast<T*>(input),
reinterpret_cast<float*>(input_global_scale),
reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(output_scale),
reinterpret_cast<uint32_t*>(input_offset_by_experts),
reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
n_experts);
} else {
cvt_fp16_to_fp4<T, false, true><<<grid, block, shared_mem_size, stream>>>(
m_topk, k, reinterpret_cast<T*>(input),
reinterpret_cast<float*>(input_global_scale),
reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(output_scale),
reinterpret_cast<uint32_t*>(input_offset_by_experts),
reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
n_experts);
}
} else {
if (n_experts >= 16) {
cvt_fp16_to_fp4<T, false, false><<<grid, block, 0, stream>>>(
m_topk, k, reinterpret_cast<T*>(input),
reinterpret_cast<float*>(input_global_scale),
reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(output_scale),
reinterpret_cast<uint32_t*>(input_offset_by_experts),
reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
n_experts, /* bool low_latency */ true);
} else {
cvt_fp16_to_fp4<T, false, true><<<grid, block, 0, stream>>>(
m_topk, k, reinterpret_cast<T*>(input),
reinterpret_cast<float*>(input_global_scale),
reinterpret_cast<uint32_t*>(output),
reinterpret_cast<uint32_t*>(output_scale),
reinterpret_cast<uint32_t*>(input_offset_by_experts),
reinterpret_cast<uint32_t*>(output_scale_offset_by_experts),
n_experts, /* bool low_latency */ true);
}
}
}
/*Quantization entry for fp4 experts quantization*/
#define CHECK_TH_CUDA(x, m) TORCH_CHECK(x.is_cuda(), m, "must be a CUDA tensor")
#define CHECK_CONTIGUOUS(x, m) \
TORCH_CHECK(x.is_contiguous(), m, "must be contiguous")
#define CHECK_INPUT(x, m) \
CHECK_TH_CUDA(x, m); \
CHECK_CONTIGUOUS(x, m);
constexpr auto HALF = at::ScalarType::Half;
constexpr auto BF16 = at::ScalarType::BFloat16;
constexpr auto FLOAT = at::ScalarType::Float;
constexpr auto INT = at::ScalarType::Int;
constexpr auto UINT8 = at::ScalarType::Byte;
void scaled_fp4_experts_quant_sm100a(
torch::Tensor& output, torch::Tensor& output_scale,
torch::Tensor const& input, torch::Tensor const& input_global_scale,
torch::Tensor const& input_offset_by_experts,
torch::Tensor const& output_scale_offset_by_experts) {
CHECK_INPUT(output, "output must be a CUDA tensor");
CHECK_INPUT(output_scale, "output_scale must be a CUDA tensor");
CHECK_INPUT(input, "input must be a CUDA tensor");
CHECK_INPUT(input_global_scale, "input_global_scale must be a CUDA tensor");
CHECK_INPUT(input_offset_by_experts,
"input_offset_by_experts must be a CUDA tensor");
CHECK_INPUT(output_scale_offset_by_experts,
"output_scale_offset_by_experts must be a CUDA tensor");
TORCH_CHECK(output.dim() == 2);
TORCH_CHECK(output_scale.dim() == 2);
TORCH_CHECK(input.dim() == 2);
TORCH_CHECK(input_global_scale.dim() == 1);
TORCH_CHECK(input_offset_by_experts.dim() == 1);
TORCH_CHECK(output_scale_offset_by_experts.dim() == 1);
TORCH_CHECK(input.scalar_type() == HALF || input.scalar_type() == BF16);
TORCH_CHECK(input_global_scale.scalar_type() == FLOAT);
TORCH_CHECK(input_offset_by_experts.scalar_type() == INT);
TORCH_CHECK(output_scale_offset_by_experts.scalar_type() == INT);
// output is uint8 (two nvfp4 values are packed into one uint8)
// output_scale is int32 (four fp8 values are packed into one int32)
TORCH_CHECK(output.scalar_type() == UINT8);
TORCH_CHECK(output_scale.scalar_type() == INT);
const int BLOCK_SIZE = 16;
auto m_topk = input.size(0);
auto k = input.size(1);
TORCH_CHECK(k % BLOCK_SIZE == 0, "k must be a multiple of 16");
auto n_experts = input_global_scale.size(0);
TORCH_CHECK(input_offset_by_experts.size(0) == n_experts + 1);
TORCH_CHECK(output_scale_offset_by_experts.size(0) == n_experts + 1);
TORCH_CHECK(output.size(0) == m_topk);
TORCH_CHECK(output.size(1) == k / 2);
int scales_k = k / BLOCK_SIZE;
// 4 means the swizzle requirement by nvidia nvfp4.
int padded_k = (scales_k + (4 - 1)) / 4 * 4;
// 4 means 4 fp8 values are packed into one int32
TORCH_CHECK(output_scale.size(1) * 4 == padded_k);
auto in_dtype = input.dtype();
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
const cudaStream_t stream =
at::cuda::getCurrentCUDAStream(input.get_device());
if (in_dtype == at::ScalarType::Half) {
quant_impl<half>(output.data_ptr(), output_scale.data_ptr(),
input.data_ptr(), input_global_scale.data_ptr(),
input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk, k,
n_experts, stream);
} else if (in_dtype == at::ScalarType::BFloat16) {
quant_impl<__nv_bfloat16>(output.data_ptr(), output_scale.data_ptr(),
input.data_ptr(), input_global_scale.data_ptr(),
input_offset_by_experts.data_ptr(),
output_scale_offset_by_experts.data_ptr(), m_topk,
k, n_experts, stream);
} else {
TORCH_CHECK(false, "Expected input data type to be half or bfloat16");
}
}