vllm/vllm/model_executor/models/kimi_linear.py
ZiTian Zhao bc306fe5e9
fix incorrect type annotation in KimiMLP (#27885)
Signed-off-by: zitian.zhao <zitian.zhao@tencentmusic.com>
2025-10-31 17:38:02 +00:00

664 lines
24 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
from typing import Any
import torch
from torch import nn
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, ParallelConfig, VllmConfig
from vllm.distributed import (
get_pp_group,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_reduce,
)
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.kda import KimiDeltaAttention
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator,
MambaStateShapeCalculator,
)
from vllm.model_executor.layers.mla import MLAModules, MultiHeadLatentAttentionWrapper
from vllm.model_executor.layers.quantization.base_config import QuantizationConfig
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.kimi_linear import KimiLinearConfig
from .interfaces import HasInnerState, IsHybrid, MixtureOfExperts, SupportsPP
from .utils import (
PPMissingLayer,
is_pp_missing_parameter,
make_layers,
maybe_prefix,
)
logger = init_logger(__name__)
class KimiMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: QuantizationConfig | None = None,
reduce_results: bool = True,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
prefix=f"{prefix}.down_proj",
)
if hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class KimiMoE(nn.Module):
def __init__(
self,
config: KimiLinearConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
layer_idx: int = 0,
):
super().__init__()
hidden_size = config.hidden_size
intermediate_size = config.intermediate_size
moe_intermediate_size = config.moe_intermediate_size
num_experts = config.num_experts
moe_renormalize = config.moe_renormalize
self.tp_size = get_tensor_model_parallel_world_size()
self.routed_scaling_factor = config.routed_scaling_factor
self.num_shared_experts = config.num_shared_experts
self.layer_idx = layer_idx
if config.hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {config.hidden_act}. "
"Only silu is supported for now."
)
# Gate always runs at half / full precision for now.
self.gate = ReplicatedLinear(
hidden_size,
num_experts,
bias=False,
quant_config=None,
prefix=f"{prefix}.gate",
)
self.gate.e_score_correction_bias = nn.Parameter(torch.empty(num_experts))
self.experts = FusedMoE(
num_experts=num_experts,
top_k=config.num_experts_per_token,
hidden_size=hidden_size,
intermediate_size=moe_intermediate_size,
reduce_results=False,
renormalize=moe_renormalize,
quant_config=quant_config,
use_grouped_topk=config.use_grouped_topk,
num_expert_group=config.num_expert_group,
topk_group=config.topk_group,
prefix=f"{prefix}.experts",
scoring_func=config.moe_router_activation_func,
e_score_correction_bias=self.gate.e_score_correction_bias,
)
if self.num_shared_experts is not None:
intermediate_size = moe_intermediate_size * self.num_shared_experts
self.shared_experts = KimiMLP(
hidden_size=config.hidden_size,
intermediate_size=intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
reduce_results=False,
prefix=f"{prefix}.shared_experts",
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_size = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_size)
if self.num_shared_experts is not None:
shared_output = self.shared_experts(hidden_states)
router_logits, _ = self.gate(hidden_states)
final_hidden_states = (
self.experts(hidden_states=hidden_states, router_logits=router_logits)
* self.routed_scaling_factor
)
if shared_output is not None:
final_hidden_states = final_hidden_states + shared_output
if self.tp_size > 1:
final_hidden_states = tensor_model_parallel_all_reduce(final_hidden_states)
return final_hidden_states.view(num_tokens, hidden_size)
class KimiMLAAttention(nn.Module):
"""
Main reference: DeepseekV2 vllm Implementation
"""
def __init__(
self,
config: KimiLinearConfig,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: int | None,
kv_lora_rank: int,
rope_theta: float = 10000,
use_nope: bool = False,
rope_scaling: dict[str, Any] | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
**kwargs,
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
tp_size = get_tensor_model_parallel_world_size()
self.num_local_heads = num_heads // tp_size
self.scaling = self.qk_head_dim**-0.5
self.rope_theta = rope_theta
self.use_nope = use_nope
assert self.use_nope is True
assert self.q_lora_rank is None
assert rope_scaling is None
assert num_heads % tp_size == 0
self.kv_a_proj_with_mqa = ReplicatedLinear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_a_proj_with_mqa",
)
self.q_proj = ColumnParallelLinear(
self.hidden_size,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_proj",
)
self.kv_a_layernorm = RMSNorm(
self.kv_lora_rank,
eps=config.rms_norm_eps,
)
self.kv_b_proj = ColumnParallelLinear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_b_proj",
)
self.o_proj = RowParallelLinear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
mla_modules = MLAModules(
kv_a_layernorm=self.kv_a_layernorm,
kv_b_proj=self.kv_b_proj,
rotary_emb=None,
o_proj=self.o_proj,
fused_qkv_a_proj=None,
kv_a_proj_with_mqa=self.kv_a_proj_with_mqa,
q_a_layernorm=None,
q_b_proj=None,
q_proj=self.q_proj,
indexer=None,
is_sparse=False,
topk_indices_buffer=None,
)
self.mla_attn = MultiHeadLatentAttentionWrapper(
self.hidden_size,
self.num_local_heads,
self.scaling,
self.qk_nope_head_dim,
self.qk_rope_head_dim,
self.v_head_dim,
self.q_lora_rank,
self.kv_lora_rank,
mla_modules,
cache_config,
quant_config,
prefix,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
output: torch.Tensor,
) -> None:
output[:] = self.mla_attn(positions, hidden_states)
class KimiDecoderLayer(nn.Module):
def __init__(
self,
config: KimiLinearConfig,
layer_idx: int,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
parallel_config: ParallelConfig | None = None,
model_config: ModelConfig | None = None,
prefix: str = "",
**kwargs,
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
self.is_moe = config.is_moe
if config.is_kda_layer(layer_idx):
self.self_attn = KimiDeltaAttention(
layer_idx=layer_idx,
hidden_size=config.hidden_size,
quant_config=quant_config,
cache_config=cache_config,
model_config=config,
prefix=f"{prefix}.self_attn",
)
else:
self.self_attn = KimiMLAAttention(
layer_idx=layer_idx,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
quant_config=quant_config,
cache_config=cache_config,
model_config=model_config,
prefix=f"{prefix}.self_attn",
config=config,
qk_nope_head_dim=config.qk_nope_head_dim,
qk_rope_head_dim=config.qk_rope_head_dim,
v_head_dim=config.v_head_dim,
q_lora_rank=config.q_lora_rank,
kv_lora_rank=config.kv_lora_rank,
use_nope=config.mla_use_nope,
)
if (
self.is_moe
and config.num_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % config.moe_layer_freq == 0
):
self.block_sparse_moe = KimiMoE(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.block_sparse_moe",
)
self.mlp = self.block_sparse_moe
else:
self.mlp = KimiMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
attn_output = torch.empty_like(hidden_states)
self.self_attn(
hidden_states=hidden_states,
positions=positions,
output=attn_output,
)
hidden_states = attn_output
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
return hidden_states, residual
@support_torch_compile
class KimiLinearModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_text_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
parallel_config = vllm_config.parallel_config
self.config = config
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
prefix=f"{prefix}.embed_tokens",
)
else:
self.embed_tokens = PPMissingLayer()
extra_kwargs = {}
def get_layer(prefix: str):
layer_idx = int(prefix.rsplit(".", 1)[1])
return KimiDecoderLayer(
config,
layer_idx,
cache_config,
quant_config,
parallel_config,
model_config,
prefix,
**extra_kwargs,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
get_layer,
prefix=f"{prefix}.layers",
)
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
world_size = get_tensor_model_parallel_world_size()
assert config.num_attention_heads % world_size == 0, (
"num_attention_heads must be divisible by world_size"
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor | None,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.get_input_embeddings(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for _, layer in enumerate(self.layers[self.start_layer : self.end_layer]):
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
residual=residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class KimiLinearForCausalLM(
nn.Module, HasInnerState, SupportsPP, MixtureOfExperts, IsHybrid
):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
self.model_config = vllm_config.model_config
self.vllm_config = vllm_config
self.config = self.model_config.hf_config
quant_config = vllm_config.quant_config
self.quant_config = quant_config
self.model = KimiLinearModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(
self.config.vocab_size,
self.config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
else:
self.lm_head = PPMissingLayer()
logit_scale = getattr(self.config, "logit_scale", 1.0)
self.logits_processor = LogitsProcessor(
self.config.vocab_size, scale=logit_scale
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor | IntermediateTensors:
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds, **kwargs
)
return hidden_states
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, torch.dtype, torch.dtype, torch.dtype]:
return MambaStateDtypeCalculator.kda_state_dtype(
vllm_config.model_config.dtype, vllm_config.cache_config.mamba_cache_dtype
)
@classmethod
def get_mamba_state_shape_from_config(
cls, vllm_config: "VllmConfig"
) -> tuple[tuple[int, ...], tuple[int, ...], tuple[int, ...], tuple[int, ...]]:
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
tp_size = parallel_config.tensor_parallel_size
num_spec = (
vllm_config.speculative_config.num_speculative_tokens
if vllm_config.speculative_config
else 0
)
return MambaStateShapeCalculator.kda_state_shape(
tp_size,
hf_config.linear_attn_config["num_heads"],
hf_config.linear_attn_config["head_dim"],
conv_kernel_size=hf_config.linear_attn_config["short_conv_kernel_size"],
num_spec=num_spec,
)
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
return self.logits_processor(self.lm_head, hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
if self.config.is_moe:
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="w1",
ckpt_down_proj_name="w2",
ckpt_up_proj_name="w3",
num_experts=self.config.num_experts,
)
else:
expert_params_mapping = []
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for args in weights:
name, loaded_weight = args[:2]
kwargs = args[2] if len(args) > 2 else {}
if "rotary_emb.inv_freq" in name:
continue
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
if spec_layer is not None:
continue # skip spec decode layers for main model
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
# Models trained using ColossalAI may include these tensors in
# the checkpoint. Skip them.
continue
for param_name, weight_name, shard_id in stacked_params_mapping:
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if ("mlp.experts." in name) and name not in params_dict:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for idx, (param_name, weight_name, expert_id, shard_id) in enumerate(
expert_params_mapping
):
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
expert_id=expert_id,
shard_id=shard_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias")
and name not in params_dict
and not self.config.is_linear_attn
): # noqa: E501
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight, **kwargs)
loaded_params.add(name)
def get_spec_layer_idx_from_weight_name(
config: KimiLinearConfig, weight_name: str
) -> int | None:
if hasattr(config, "num_nextn_predict_layers") and (
config.num_nextn_predict_layers > 0
):
layer_idx = config.num_hidden_layers
for i in range(config.num_nextn_predict_layers):
if weight_name.startswith(f"model.layers.{layer_idx + i}."):
return layer_idx + i
return None