Cyrus Leung d1ca7df84d
[VLM] Merged multi-modal processor for InternVL-based models (#12553)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
Signed-off-by: Isotr0py <2037008807@qq.com>
Co-authored-by: Isotr0py <2037008807@qq.com>
2025-02-04 16:44:52 +08:00

65 lines
2.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
"""Tests for InternVL's multimodal preprocessing kwargs."""
from typing import Optional
import pytest
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.utils import cached_get_tokenizer
from ....conftest import _ImageAssets
from ...utils import build_model_context
@pytest.mark.parametrize("model_id", ["OpenGVLab/InternVL2-2B"])
@pytest.mark.parametrize("max_dynamic_patch", [1, 4])
@pytest.mark.parametrize("dynamic_image_size", [True, False, None])
@pytest.mark.parametrize("num_imgs", [1, 2])
def test_processor_override(
model_id: str,
image_assets: _ImageAssets,
max_dynamic_patch: int,
dynamic_image_size: Optional[bool],
num_imgs: int,
):
ctx = build_model_context(
model_name=model_id,
tokenizer_name=model_id,
trust_remote_code=True,
mm_processor_kwargs=None,
limit_mm_per_prompt={"image": num_imgs},
)
tokenizer = cached_get_tokenizer(
ctx.model_config.tokenizer,
trust_remote_code=ctx.model_config.trust_remote_code,
)
processor = MULTIMODAL_REGISTRY.create_processor(
ctx.model_config,
tokenizer=tokenizer,
)
mm_processor_kwargs = {
"max_dynamic_patch": max_dynamic_patch,
}
if dynamic_image_size is not None:
mm_processor_kwargs["dynamic_image_size"] = dynamic_image_size
# Build the image str / prompt based on the number of images we pass
prompt = "<image>" * num_imgs
image = image_assets[0].pil_image.resize((448 * 2, 448 * 2))
mm_data = {"image": [image] * num_imgs}
expected_num_patches = max_dynamic_patch + 1 if max_dynamic_patch > 1 else 1
if dynamic_image_size is False:
expected_num_patches = 1
processed_inputs = processor.apply(prompt, mm_data, mm_processor_kwargs)
# Ensure we have the right number of placeholders per num_crops size
image_token_id = tokenizer.convert_tokens_to_ids("<IMG_CONTEXT>")
img_tok_count = processed_inputs["prompt_token_ids"].count(image_token_id)
pixel_shape = processed_inputs["mm_kwargs"]["pixel_values_flat"].shape
assert img_tok_count == 256 * expected_num_patches * num_imgs
assert pixel_shape[0] == expected_num_patches * num_imgs