vllm/vllm/model_executor/models/mlp_speculator.py
2024-08-29 19:19:08 -07:00

198 lines
7.5 KiB
Python

import math
from typing import Iterable, List, Tuple
import torch
import torch.nn as nn
from vllm.model_executor import SamplingMetadata
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.sampler import Sampler, SamplerOutput
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead, VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.transformers_utils.configs import MLPSpeculatorConfig
SQRT2 = 2**0.5
class MLPSpeculatorLayerNorm(nn.Module):
"""
A L2 normalization implementation
...
Args
----
normalized_shape : int
Dimensionality of input data (size of final tensor axis)
eps : float
Safety term to prevent division by zero. Make sure the chosen value
fits in the range of your encoding scheme
(i.e. fp16 requires eps >= 6e-8).
elementwise_scale_and_shift : bool
Include a learned scaling and shift term after normalization.
"""
def __init__(
self,
normalized_shape,
eps=1e-06,
elementwise_scale_and_shift=True,
):
super(MLPSpeculatorLayerNorm, self).__init__()
self.elementwise_scale_and_shift = elementwise_scale_and_shift
if self.elementwise_scale_and_shift:
self.weight = nn.Parameter(torch.empty(normalized_shape))
self.bias = nn.Parameter(torch.empty(normalized_shape))
self.eps = eps
def forward(self, x):
xf = x
xf = xf * torch.rsqrt(xf.pow(2).mean(-1, keepdim=True) + self.eps)
x = xf.type_as(x)
if self.elementwise_scale_and_shift:
x = self.weight * x
x = x + self.bias
return x
class MLPSpeculator(nn.Module):
"""
An implementation of the speculative models introduced in
"Accelerating Production LLMs with Combined Token/Embedding
Speculators"
https://arxiv.org/pdf/2404.19124
Trained speculators of this type are available on HF hub at:
https://huggingface.co/ibm-fms and https://huggingface.co/ibm-granite
"""
def __init__(self, config: MLPSpeculatorConfig, **kwargs) -> None:
super().__init__()
self.n_predict = config.n_predict
self.vocab_size = config.vocab_size
self.emb_dim = config.emb_dim
self.inner_dim = config.inner_dim if config.inner_dim != 0 \
else config.emb_dim
self.max_speculative_tokens = config.num_lookahead_tokens
self.tie_weights = config.tie_weights
self.scale_input = config.scale_input
if self.tie_weights:
assert (
self.n_predict >
1), "You cannot tie weights between stages when only 1 exists"
embedding = VocabParallelEmbedding(
config.vocab_size,
self.inner_dim,
org_num_embeddings=config.vocab_size)
self.emb = nn.ModuleList([embedding] * self.max_speculative_tokens)
# the initial projection from the base model may
# have a different size, so that stays separate.
proj_first = nn.Linear(self.emb_dim, self.inner_dim, bias=False)
proj_tied = nn.Linear(self.inner_dim, self.inner_dim, bias=False)
self.proj = nn.ModuleList([proj_first] + [proj_tied] *
(self.max_speculative_tokens - 1))
head = ParallelLMHead(self.vocab_size, self.inner_dim, bias=False)
self.head = nn.ModuleList([head] * self.max_speculative_tokens)
ln = MLPSpeculatorLayerNorm(self.inner_dim,
elementwise_scale_and_shift=True)
self.ln = nn.ModuleList([ln] * self.max_speculative_tokens)
else:
self.emb = nn.ModuleList([
VocabParallelEmbedding(config.vocab_size,
self.inner_dim,
org_num_embeddings=config.vocab_size)
for _ in range(self.max_speculative_tokens)
])
self.proj = nn.ModuleList([
nn.Linear((self.emb_dim if i == 0 else self.inner_dim),
self.inner_dim,
bias=False)
for i in range(self.max_speculative_tokens)
])
self.head = nn.ModuleList([
ParallelLMHead(self.vocab_size, self.inner_dim, bias=False)
for _ in range(self.max_speculative_tokens)
])
self.ln = nn.ModuleList([
MLPSpeculatorLayerNorm(self.inner_dim,
elementwise_scale_and_shift=True)
for _ in range(self.max_speculative_tokens)
])
if self.scale_input:
self.ln0 = MLPSpeculatorLayerNorm(
self.emb_dim, elementwise_scale_and_shift=False)
self.state_weight = 0.5**(0.5 / config.n_predict)
self.emb_weight = math.sqrt(
(1 - self.state_weight**2) * (self.inner_dim / 2))
self.activation = nn.GELU()
self.config = config
self.logits_processor = LogitsProcessor(config.vocab_size,
config.vocab_size, 1.0)
self.sampler = Sampler()
def generate_proposals(
self,
input_ids: torch.Tensor,
previous_hidden_states: torch.Tensor,
num_predict_tokens: int,
sampling_metadata: SamplingMetadata,
) -> List[SamplerOutput]:
if num_predict_tokens > self.max_speculative_tokens:
raise ValueError(f"Max speculative tokens for model is "
f"{self.max_speculative_tokens}, but "
f"{num_predict_tokens} were requested")
# b x 1 x d
previous_hidden_states = previous_hidden_states.unsqueeze(1)
if self.scale_input:
previous_hidden_states = self.ln0(previous_hidden_states) / SQRT2
# b x 1
last_tokens = input_ids.unsqueeze(1)
next_tokens = []
for head_index in range(num_predict_tokens):
# Project and predict
z = self.emb[head_index](last_tokens) # b k d
states = self.proj[head_index](previous_hidden_states)
# Weighted add of state_weight*state and emb_weight*z
# Let subsequent LN take care of denominator
# state_weight is close to 1, so shouldn't be any precision issues
states.add_(z, alpha=self.emb_weight / self.state_weight)
states = self.activation(self.ln[head_index](states)) # b k d
previous_hidden_states = states
# TODO: not yet supporting top_k_tokens_per_head
states = states.flatten(0, 1)
logits = self.logits_processor(self.head[head_index], states,
sampling_metadata)
output = self.sampler(logits, sampling_metadata)
last_tokens = output.sampled_token_ids
next_tokens.append(output)
return next_tokens
def load_weights(self, weights: Iterable[Tuple[str, torch.Tensor]]):
params_dict = dict(self.named_parameters())
for name, loaded_weight in weights:
param = params_dict.get(name.replace("speculator.", ""))
if param is not None:
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)