mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 06:25:01 +08:00
819 lines
28 KiB
Python
819 lines
28 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import base64
|
|
import math
|
|
import mimetypes
|
|
import os
|
|
from tempfile import NamedTemporaryFile, TemporaryDirectory
|
|
from typing import TYPE_CHECKING, NamedTuple
|
|
|
|
import numpy as np
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from PIL import Image, ImageChops
|
|
|
|
from tests.utils import multi_gpu_test
|
|
from vllm.distributed import get_tensor_model_parallel_world_size
|
|
from vllm.distributed.parallel_state import (init_distributed_environment,
|
|
initialize_model_parallel)
|
|
from vllm.multimodal.image import convert_image_mode
|
|
from vllm.multimodal.inputs import PlaceholderRange
|
|
from vllm.multimodal.utils import (MediaConnector, argsort_mm_positions,
|
|
get_load_balance_assignment,
|
|
run_dp_sharded_mrope_vision_model,
|
|
run_dp_sharded_vision_model)
|
|
from vllm.platforms import current_platform
|
|
from vllm.utils import get_open_port, update_environment_variables
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.multimodal.inputs import MultiModalPlaceholderDict
|
|
|
|
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
|
|
TEST_IMAGE_ASSETS = [
|
|
"2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", # "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
|
|
"Grayscale_8bits_palette_sample_image.png", # "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
|
|
"1280px-Venn_diagram_rgb.svg.png", # "https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
|
|
"RGBA_comp.png", # "https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
|
|
]
|
|
|
|
TEST_VIDEO_URLS = [
|
|
"https://www.bogotobogo.com/python/OpenCV_Python/images/mean_shift_tracking/slow_traffic_small.mp4",
|
|
"https://github.com/opencv/opencv/raw/refs/tags/4.12.0/samples/data/vtest.avi",
|
|
]
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def url_images(local_asset_server) -> dict[str, Image.Image]:
|
|
|
|
return {
|
|
image_url: local_asset_server.get_image_asset(image_url)
|
|
for image_url in TEST_IMAGE_ASSETS
|
|
}
|
|
|
|
|
|
def get_supported_suffixes() -> tuple[str, ...]:
|
|
# We should at least test the file types mentioned in GPT-4 with Vision
|
|
OPENAI_SUPPORTED_SUFFIXES = ('.png', '.jpeg', '.jpg', '.webp', '.gif')
|
|
|
|
# Additional file types that are supported by us
|
|
EXTRA_SUPPORTED_SUFFIXES = ('.bmp', '.tiff')
|
|
|
|
return OPENAI_SUPPORTED_SUFFIXES + EXTRA_SUPPORTED_SUFFIXES
|
|
|
|
|
|
def _image_equals(a: Image.Image, b: Image.Image) -> bool:
|
|
return (np.asarray(a) == np.asarray(convert_image_mode(b, a.mode))).all()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_ASSETS, indirect=True)
|
|
async def test_fetch_image_http(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
image_sync = connector.fetch_image(image_url)
|
|
image_async = await connector.fetch_image_async(image_url)
|
|
assert _image_equals(image_sync, image_async)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("raw_image_url", TEST_IMAGE_ASSETS)
|
|
@pytest.mark.parametrize("suffix", get_supported_suffixes())
|
|
async def test_fetch_image_base64(url_images: dict[str, Image.Image],
|
|
raw_image_url: str, suffix: str):
|
|
connector = MediaConnector()
|
|
url_image = url_images[raw_image_url]
|
|
|
|
try:
|
|
mime_type = Image.MIME[Image.registered_extensions()[suffix]]
|
|
except KeyError:
|
|
try:
|
|
mime_type = mimetypes.types_map[suffix]
|
|
except KeyError:
|
|
pytest.skip('No MIME type')
|
|
|
|
with NamedTemporaryFile(suffix=suffix) as f:
|
|
try:
|
|
url_image.save(f.name)
|
|
except Exception as e:
|
|
if e.args[0] == 'cannot write mode RGBA as JPEG':
|
|
pytest.skip('Conversion not supported')
|
|
|
|
raise
|
|
|
|
base64_image = base64.b64encode(f.read()).decode("utf-8")
|
|
data_url = f"data:{mime_type};base64,{base64_image}"
|
|
|
|
data_image_sync = connector.fetch_image(data_url)
|
|
if _image_equals(url_image, Image.open(f)):
|
|
assert _image_equals(url_image, data_image_sync)
|
|
else:
|
|
pass # Lossy format; only check that image can be opened
|
|
|
|
data_image_async = await connector.fetch_image_async(data_url)
|
|
assert _image_equals(data_image_sync, data_image_async)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", TEST_IMAGE_ASSETS, indirect=True)
|
|
async def test_fetch_image_local_files(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
with TemporaryDirectory() as temp_dir:
|
|
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
|
|
|
|
origin_image = connector.fetch_image(image_url)
|
|
origin_image.save(os.path.join(temp_dir, os.path.basename(image_url)),
|
|
quality=100,
|
|
icc_profile=origin_image.info.get('icc_profile'))
|
|
|
|
image_async = await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/{os.path.basename(image_url)}")
|
|
image_sync = local_connector.fetch_image(
|
|
f"file://{temp_dir}/{os.path.basename(image_url)}")
|
|
# Check that the images are equal
|
|
assert not ImageChops.difference(image_sync, image_async).getbbox()
|
|
|
|
with pytest.raises(ValueError, match="must be a subpath"):
|
|
await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
with pytest.raises(RuntimeError, match="Cannot load local files"):
|
|
await connector.fetch_image_async(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
|
|
with pytest.raises(ValueError, match="must be a subpath"):
|
|
local_connector.fetch_image(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
with pytest.raises(RuntimeError, match="Cannot load local files"):
|
|
connector.fetch_image(
|
|
f"file://{temp_dir}/../{os.path.basename(image_url)}")
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("image_url", [TEST_IMAGE_ASSETS[0]], indirect=True)
|
|
async def test_fetch_image_local_files_with_space_in_name(image_url: str):
|
|
connector = MediaConnector()
|
|
|
|
with TemporaryDirectory() as temp_dir:
|
|
local_connector = MediaConnector(allowed_local_media_path=temp_dir)
|
|
|
|
origin_image = connector.fetch_image(image_url)
|
|
filename = "file name with space.jpg"
|
|
origin_image.save(os.path.join(temp_dir, filename),
|
|
quality=100,
|
|
icc_profile=origin_image.info.get('icc_profile'))
|
|
|
|
try:
|
|
image_async = await local_connector.fetch_image_async(
|
|
f"file://{temp_dir}/{filename}")
|
|
image_sync = local_connector.fetch_image(
|
|
f"file://{temp_dir}/{filename}")
|
|
except FileNotFoundError as e:
|
|
pytest.fail(
|
|
"Failed to fetch image with space in name: {}".format(e))
|
|
# Check that the images are equal
|
|
assert not ImageChops.difference(image_sync, image_async).getbbox()
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_fetch_image_error_conversion():
|
|
connector = MediaConnector()
|
|
broken_img = ""
|
|
|
|
# PIL.UnidentifiedImageError should be converted to ValueError
|
|
with pytest.raises(ValueError):
|
|
await connector.fetch_image_async(broken_img)
|
|
|
|
with pytest.raises(ValueError):
|
|
connector.fetch_image(broken_img)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
|
|
@pytest.mark.parametrize("num_frames", [-1, 32, 1800])
|
|
async def test_fetch_video_http(video_url: str, num_frames: int):
|
|
connector = MediaConnector(
|
|
media_io_kwargs={"video": {
|
|
"num_frames": num_frames,
|
|
}})
|
|
|
|
video_sync, metadata_sync = connector.fetch_video(video_url)
|
|
video_async, metadata_async = await connector.fetch_video_async(video_url)
|
|
assert np.array_equal(video_sync, video_async)
|
|
assert metadata_sync == metadata_async
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("video_url", TEST_VIDEO_URLS)
|
|
@pytest.mark.parametrize("max_duration", [1, 60, 1800])
|
|
@pytest.mark.parametrize("requested_fps", [2, 24])
|
|
async def test_fetch_video_http_with_dynamic_loader(
|
|
video_url: str, max_duration: int, requested_fps: int,
|
|
monkeypatch: pytest.MonkeyPatch):
|
|
with monkeypatch.context() as m:
|
|
m.setenv("VLLM_VIDEO_LOADER_BACKEND", "opencv_dynamic")
|
|
connector = MediaConnector(
|
|
media_io_kwargs={
|
|
"video": {
|
|
"max_duration": max_duration,
|
|
"requested_fps": requested_fps,
|
|
}
|
|
})
|
|
|
|
video_sync, metadata_sync = connector.fetch_video(video_url)
|
|
video_async, metadata_async = await connector.fetch_video_async(
|
|
video_url)
|
|
|
|
assert np.array_equal(video_sync, video_async)
|
|
assert metadata_sync == metadata_async
|
|
assert metadata_sync["video_backend"] == "opencv_dynamic"
|
|
|
|
|
|
# Used for `test_argsort_mm_positions`.
|
|
class TestCase(NamedTuple):
|
|
mm_positions: "MultiModalPlaceholderDict"
|
|
expected_modality_idxs: list[tuple[str, int]]
|
|
|
|
|
|
def test_argsort_mm_positions():
|
|
|
|
test_cases = [
|
|
# Single modality
|
|
## Internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=3, length=2),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
## Internally unsorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=3, length=2),
|
|
PlaceholderRange(offset=0, length=2),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 1),
|
|
("image", 0),
|
|
],
|
|
),
|
|
|
|
# Two modalities
|
|
## Internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=7, length=4),
|
|
PlaceholderRange(offset=11, length=5),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("audio", 0),
|
|
("audio", 1),
|
|
("image", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
## Interleaved, internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=4),
|
|
PlaceholderRange(offset=8, length=2),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
PlaceholderRange(offset=11, length=4),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("audio", 0),
|
|
("image", 1),
|
|
("audio", 1),
|
|
],
|
|
),
|
|
## Interleaved, internally unsorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=8, length=2),
|
|
PlaceholderRange(offset=0, length=4),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=11, length=4),
|
|
PlaceholderRange(offset=5, length=2),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 1),
|
|
("audio", 1),
|
|
("image", 0),
|
|
("audio", 0),
|
|
],
|
|
),
|
|
|
|
# Three modalities
|
|
## Internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=15, length=7),
|
|
PlaceholderRange(offset=22, length=8),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=3, length=4),
|
|
PlaceholderRange(offset=7, length=5),
|
|
PlaceholderRange(offset=12, length=6),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("audio", 0),
|
|
("video", 0),
|
|
("video", 1),
|
|
("video", 2),
|
|
("image", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
## Interleaved, internally sorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=2, length=3),
|
|
PlaceholderRange(offset=20, length=4),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=8, length=5),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("image", 1),
|
|
("audio", 0),
|
|
("video", 0),
|
|
("image", 2),
|
|
],
|
|
),
|
|
## Interleaved, internally sunorted
|
|
TestCase(
|
|
mm_positions={
|
|
"image": [
|
|
PlaceholderRange(offset=0, length=2),
|
|
PlaceholderRange(offset=20, length=4),
|
|
PlaceholderRange(offset=2, length=3),
|
|
],
|
|
"audio": [
|
|
PlaceholderRange(offset=5, length=2),
|
|
],
|
|
"video": [
|
|
PlaceholderRange(offset=8, length=5),
|
|
]
|
|
},
|
|
expected_modality_idxs=[
|
|
("image", 0),
|
|
("image", 2),
|
|
("audio", 0),
|
|
("video", 0),
|
|
("image", 1),
|
|
],
|
|
),
|
|
]
|
|
|
|
for mm_positions, expected_modality_idxs in test_cases:
|
|
modality_idxs = argsort_mm_positions(mm_positions)
|
|
|
|
assert modality_idxs == expected_modality_idxs
|
|
|
|
|
|
class SimpleLinearModel(torch.nn.Module):
|
|
"""A simple linear vision model for testing."""
|
|
|
|
def __init__(self, input_dim: int = 3 * 224 * 224, output_dim: int = 32):
|
|
super().__init__()
|
|
self.flatten = torch.nn.Flatten()
|
|
self.linear = torch.nn.Linear(input_dim, output_dim)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
# Flatten the input and apply linear transformation
|
|
x = self.flatten(x)
|
|
return self.linear(x)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=2)
|
|
@pytest.mark.parametrize(
|
|
"batch_size",
|
|
[
|
|
1, # Single image
|
|
4, # Small batch
|
|
5, # Odd batch size (for testing padding)
|
|
],
|
|
)
|
|
def test_run_dp_sharded_vision_model(batch_size: int):
|
|
world_size = 2
|
|
# Launch processes
|
|
mp.spawn(
|
|
run_dp_sharded_vision_model_vs_direct,
|
|
args=(
|
|
world_size,
|
|
batch_size,
|
|
get_open_port(),
|
|
),
|
|
nprocs=world_size,
|
|
)
|
|
|
|
|
|
def run_dp_sharded_vision_model_vs_direct(local_rank: int, world_size: int,
|
|
batch_size: int, master_port: int):
|
|
"""
|
|
Test that run_dp_sharded_vision_model produces the same results as
|
|
calling the model directly.
|
|
"""
|
|
|
|
# Set random seed for reproducibility
|
|
current_platform.seed_everything(0)
|
|
|
|
device = f"{current_platform.device_name}:{local_rank}"
|
|
current_platform.set_device(device)
|
|
torch.set_default_device(device)
|
|
|
|
update_environment_variables({
|
|
'RANK': str(local_rank),
|
|
'LOCAL_RANK': str(local_rank),
|
|
'WORLD_SIZE': str(world_size),
|
|
'MASTER_ADDR': 'localhost',
|
|
'MASTER_PORT': str(master_port),
|
|
})
|
|
|
|
# initialize distributed
|
|
init_distributed_environment()
|
|
initialize_model_parallel(tensor_model_parallel_size=world_size)
|
|
|
|
# Create a test input tensor
|
|
image_input = torch.randn(batch_size, 3, 224, 224)
|
|
|
|
# Create a simple linear model
|
|
vision_model = SimpleLinearModel()
|
|
|
|
# Run the model directly on the full input
|
|
with torch.inference_mode():
|
|
direct_output = vision_model(image_input)
|
|
|
|
# Run the model through the sharded function
|
|
with torch.inference_mode():
|
|
sharded_output = run_dp_sharded_vision_model(image_input, vision_model)
|
|
|
|
# Check that the world size is set up correctly
|
|
assert get_tensor_model_parallel_world_size() == world_size
|
|
|
|
# Check that the outputs have the same shape
|
|
assert direct_output.shape == sharded_output.shape
|
|
|
|
# Check that the outputs are close (they should be identical)
|
|
assert torch.allclose(direct_output, sharded_output, rtol=1e-5, atol=1e-5)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"sizes,num_gpus,expected_shuffle_indices,expected_gpu_sample_counts,"
|
|
"expected_grouped_sizes_per_gpu,test_description",
|
|
[
|
|
# Empty input
|
|
([], 2, [], [0, 0], [0, 0], "empty input"),
|
|
|
|
# Fewer samples than GPUs
|
|
([100, 200], 4, [1, 0], [1, 1, 0, 0], [200, 100, 0, 0
|
|
], "fewer samples than GPUs"),
|
|
|
|
# Single GPU
|
|
([100, 200, 300], 1, [2, 1, 0], [3], [600], "single GPU"),
|
|
|
|
# Balanced assignment
|
|
([100, 100, 100, 100
|
|
], 2, [0, 2, 1, 3], [2, 2], [200, 200], "balanced assignment"),
|
|
|
|
# Unbalanced sizes - this one is trickier since the algorithm is greedy
|
|
([1000, 100, 200, 50], 2, [0, 2, 1, 3
|
|
], [1, 3], [1000, 350], "unbalanced sizes"),
|
|
],
|
|
)
|
|
def test_get_load_balance_assignment_cases(sizes, num_gpus,
|
|
expected_shuffle_indices,
|
|
expected_gpu_sample_counts,
|
|
expected_grouped_sizes_per_gpu,
|
|
test_description):
|
|
"""Test get_load_balance_assignment with various input cases."""
|
|
result = get_load_balance_assignment(sizes, num_gpus=num_gpus)
|
|
(shuffle_indices, gpu_sample_counts, grouped_sizes_per_gpu) = result
|
|
|
|
# Common assertions for all cases
|
|
assert len(shuffle_indices) == len(sizes)
|
|
assert len(gpu_sample_counts) == num_gpus
|
|
assert len(grouped_sizes_per_gpu) == num_gpus
|
|
assert sum(gpu_sample_counts) == len(sizes)
|
|
|
|
assert shuffle_indices == expected_shuffle_indices
|
|
|
|
assert gpu_sample_counts == expected_gpu_sample_counts
|
|
assert grouped_sizes_per_gpu == expected_grouped_sizes_per_gpu
|
|
|
|
|
|
class SimpleMRopeVisionModel(torch.nn.Module):
|
|
"""A simple vision model for testing mrope functionality."""
|
|
|
|
def __init__(self, spatial_merge_size: int = 2, out_hidden_size: int = 64):
|
|
super().__init__()
|
|
self.spatial_merge_size = spatial_merge_size
|
|
self.out_hidden_size = out_hidden_size
|
|
self.linear = torch.nn.Linear(768, out_hidden_size)
|
|
|
|
def forward(self, pixel_values: torch.Tensor,
|
|
grid_thw_list: list[list[int]]):
|
|
"""Simple forward pass that simulates spatial merging."""
|
|
# Apply linear transformation
|
|
embeddings = self.linear(pixel_values)
|
|
|
|
# Simulate spatial merging by reducing the number of patches
|
|
merge_factor = self.spatial_merge_size * self.spatial_merge_size
|
|
|
|
# Group patches and merge spatially
|
|
merged_embeddings = []
|
|
start_idx = 0
|
|
|
|
for grid_thw in grid_thw_list:
|
|
num_patches = math.prod(grid_thw)
|
|
end_idx = start_idx + num_patches
|
|
|
|
# Get patches for this image
|
|
image_patches = embeddings[start_idx:end_idx]
|
|
|
|
# Simulate spatial merging by averaging groups of patches
|
|
merged_patches = num_patches // merge_factor
|
|
if merged_patches > 0:
|
|
# Reshape and average to simulate merging
|
|
reshaped = image_patches[:merged_patches * merge_factor].view(
|
|
merged_patches, merge_factor, -1)
|
|
merged = reshaped.mean(dim=1)
|
|
merged_embeddings.append(merged)
|
|
|
|
start_idx = end_idx
|
|
|
|
if merged_embeddings:
|
|
return torch.cat(merged_embeddings, dim=0)
|
|
else:
|
|
return torch.empty((0, self.out_hidden_size),
|
|
device=pixel_values.device,
|
|
dtype=pixel_values.dtype)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=2)
|
|
@pytest.mark.parametrize(
|
|
"batch_size",
|
|
[
|
|
1, # Single image
|
|
3, # Small batch
|
|
5, # Odd batch size (for testing padding)
|
|
],
|
|
)
|
|
def test_run_dp_sharded_mrope_vision_model(batch_size: int):
|
|
world_size = 2
|
|
# Launch processes
|
|
mp.spawn(
|
|
run_dp_sharded_mrope_vision_model_vs_direct,
|
|
args=(
|
|
world_size,
|
|
batch_size,
|
|
get_open_port(),
|
|
),
|
|
nprocs=world_size,
|
|
)
|
|
|
|
|
|
def run_dp_sharded_mrope_vision_model_vs_direct(local_rank: int,
|
|
world_size: int,
|
|
batch_size: int,
|
|
master_port: int):
|
|
"""
|
|
Test that run_dp_sharded_mrope_vision_model produces the same results as
|
|
calling the model directly.
|
|
"""
|
|
# Set random seed for reproducibility
|
|
current_platform.seed_everything(0)
|
|
device = f"{current_platform.device_name}:{local_rank}"
|
|
current_platform.set_device(device)
|
|
torch.set_default_device(device)
|
|
|
|
update_environment_variables({
|
|
'RANK': str(local_rank),
|
|
'LOCAL_RANK': str(local_rank),
|
|
'WORLD_SIZE': str(world_size),
|
|
'MASTER_ADDR': 'localhost',
|
|
'MASTER_PORT': str(master_port),
|
|
})
|
|
|
|
# initialize distributed
|
|
init_distributed_environment()
|
|
initialize_model_parallel(tensor_model_parallel_size=world_size)
|
|
|
|
# Create test data
|
|
grid_thw_list = []
|
|
pixel_values_list = []
|
|
|
|
for i in range(batch_size):
|
|
# Varying image sizes for better testing
|
|
t, h, w = 1, 4 + i, 4 + i
|
|
grid_thw_list.append([t, h, w])
|
|
|
|
num_patches = t * h * w
|
|
# Create random pixel values for this image
|
|
image_pixels = torch.randn(num_patches, 768)
|
|
pixel_values_list.append(image_pixels)
|
|
|
|
# Concatenate all pixel values
|
|
pixel_values = torch.cat(pixel_values_list, dim=0)
|
|
|
|
# Create a simple mrope vision model
|
|
vision_model = SimpleMRopeVisionModel()
|
|
|
|
# Run the model directly on the full input (only on rank 0)
|
|
if local_rank == 0:
|
|
with torch.inference_mode():
|
|
direct_output = vision_model(pixel_values, grid_thw_list)
|
|
|
|
# Run the model through the sharded function
|
|
with torch.inference_mode():
|
|
sharded_output = run_dp_sharded_mrope_vision_model(vision_model,
|
|
pixel_values,
|
|
grid_thw_list,
|
|
rope_type="rope_3d")
|
|
sharded_output = torch.cat(sharded_output, dim=0)
|
|
|
|
# Check that the world size is set up correctly
|
|
assert get_tensor_model_parallel_world_size() == world_size
|
|
|
|
# Compare outputs (only on rank 0)
|
|
if local_rank == 0:
|
|
# Check that the outputs have the same shape
|
|
assert direct_output.shape == sharded_output.shape
|
|
# Check that the outputs are close (they should be identical)
|
|
assert torch.allclose(direct_output,
|
|
sharded_output,
|
|
rtol=1e-5,
|
|
atol=1e-5)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=2)
|
|
def test_run_dp_sharded_mrope_vision_model_empty_input():
|
|
world_size = 2
|
|
mp.spawn(
|
|
run_dp_sharded_mrope_vision_model_empty_input_worker,
|
|
args=(world_size, get_open_port()),
|
|
nprocs=world_size,
|
|
)
|
|
|
|
|
|
def run_dp_sharded_mrope_vision_model_empty_input_worker(
|
|
local_rank: int, world_size: int, master_port: int):
|
|
"""Test run_dp_sharded_mrope_vision_model with empty input."""
|
|
# Set up distributed environment
|
|
device = f"{current_platform.device_name}:{local_rank}"
|
|
current_platform.set_device(device)
|
|
torch.set_default_device(device)
|
|
|
|
update_environment_variables({
|
|
'RANK': str(local_rank),
|
|
'LOCAL_RANK': str(local_rank),
|
|
'WORLD_SIZE': str(world_size),
|
|
'MASTER_ADDR': 'localhost',
|
|
'MASTER_PORT': str(master_port),
|
|
})
|
|
|
|
init_distributed_environment()
|
|
initialize_model_parallel(tensor_model_parallel_size=world_size)
|
|
|
|
# Create empty inputs
|
|
pixel_values = torch.empty((0, 768))
|
|
grid_thw_list: list[list[int]] = []
|
|
|
|
vision_model = SimpleMRopeVisionModel()
|
|
|
|
# Should handle empty input gracefully
|
|
with torch.inference_mode():
|
|
output = run_dp_sharded_mrope_vision_model(vision_model,
|
|
pixel_values,
|
|
grid_thw_list,
|
|
rope_type="rope_3d")
|
|
|
|
assert len(output) == 0
|
|
|
|
|
|
@multi_gpu_test(num_gpus=4)
|
|
def test_run_dp_sharded_mrope_vision_model_uneven_load():
|
|
world_size = 4
|
|
mp.spawn(
|
|
run_dp_sharded_mrope_vision_model_uneven_load_worker,
|
|
args=(world_size, get_open_port()),
|
|
nprocs=world_size,
|
|
)
|
|
|
|
|
|
def run_dp_sharded_mrope_vision_model_uneven_load_worker(
|
|
local_rank: int, world_size: int, master_port: int):
|
|
"""Test run_dp_sharded_mrope_vision_model with uneven load distribution."""
|
|
# Set up distributed environment
|
|
current_platform.seed_everything(123)
|
|
device = f"{current_platform.device_name}:{local_rank}"
|
|
current_platform.set_device(device)
|
|
torch.set_default_device(device)
|
|
|
|
update_environment_variables({
|
|
'RANK': str(local_rank),
|
|
'LOCAL_RANK': str(local_rank),
|
|
'WORLD_SIZE': str(world_size),
|
|
'MASTER_ADDR': 'localhost',
|
|
'MASTER_PORT': str(master_port),
|
|
})
|
|
|
|
init_distributed_environment()
|
|
initialize_model_parallel(tensor_model_parallel_size=world_size)
|
|
|
|
# Create images with very different sizes
|
|
grid_thw_list = [
|
|
[1, 2, 2], # Small: 4 patches
|
|
[1, 8, 8], # Large: 64 patches
|
|
[1, 3, 3], # Medium: 9 patches
|
|
]
|
|
|
|
pixel_values_list = []
|
|
for grid_thw in grid_thw_list:
|
|
num_patches = math.prod(grid_thw)
|
|
image_pixels = torch.randn(num_patches, 768)
|
|
pixel_values_list.append(image_pixels)
|
|
|
|
pixel_values = torch.cat(pixel_values_list, dim=0)
|
|
vision_model = SimpleMRopeVisionModel()
|
|
|
|
# Should handle uneven distribution without errors
|
|
with torch.inference_mode():
|
|
output_tuple = run_dp_sharded_mrope_vision_model(vision_model,
|
|
pixel_values,
|
|
grid_thw_list,
|
|
rope_type="rope_3d")
|
|
|
|
# Verify output shape is reasonable
|
|
merge_factor = vision_model.spatial_merge_size**2
|
|
expected_output_patches = list(
|
|
math.prod(grid_thw) // merge_factor for grid_thw in grid_thw_list)
|
|
|
|
for i, output in enumerate(output_tuple):
|
|
assert output.shape[0] == expected_output_patches[i]
|
|
assert output.shape[1] == vision_model.out_hidden_size
|
|
|
|
|
|
@pytest.mark.parametrize("spatial_merge_size", [2, 4])
|
|
def test_simple_mrope_vision_model_spatial_merge(spatial_merge_size: int):
|
|
"""Test SimpleMRopeVisionModel with different spatial merge sizes."""
|
|
device = current_platform.device_type
|
|
|
|
grid_thw_list = [[1, 4, 4], [1, 6, 6]] # Two images
|
|
pixel_values_list = []
|
|
|
|
for grid_thw in grid_thw_list:
|
|
num_patches = math.prod(grid_thw)
|
|
image_pixels = torch.randn(num_patches, 768, device=device)
|
|
pixel_values_list.append(image_pixels)
|
|
|
|
pixel_values = torch.cat(pixel_values_list, dim=0)
|
|
vision_model = SimpleMRopeVisionModel(
|
|
spatial_merge_size=spatial_merge_size).to(device)
|
|
|
|
with torch.inference_mode():
|
|
output = vision_model(pixel_values, grid_thw_list)
|
|
|
|
# Verify output dimensions based on spatial merging
|
|
total_patches = sum(math.prod(grid_thw) for grid_thw in grid_thw_list)
|
|
merge_factor = spatial_merge_size**2
|
|
expected_output_patches = total_patches // merge_factor
|
|
|
|
assert output.shape[0] == expected_output_patches
|
|
assert output.shape[1] == vision_model.out_hidden_size
|