vllm/vllm/envs.py
youkaichao d9a252bc8e
[Core][Distributed] add shm broadcast (#5399)
Co-authored-by: Cody Yu <hao.yu.cody@gmail.com>
2024-06-21 05:12:35 +00:00

245 lines
9.0 KiB
Python

import os
from typing import TYPE_CHECKING, Any, Callable, Dict, Optional
if TYPE_CHECKING:
VLLM_HOST_IP: str = ""
VLLM_PORT: Optional[int] = None
VLLM_USE_MODELSCOPE: bool = False
VLLM_RINGBUFFER_WARNING_INTERVAL: int = 60
VLLM_INSTANCE_ID: Optional[str] = None
VLLM_NCCL_SO_PATH: Optional[str] = None
LD_LIBRARY_PATH: Optional[str] = None
VLLM_USE_TRITON_FLASH_ATTN: bool = False
LOCAL_RANK: int = 0
CUDA_VISIBLE_DEVICES: Optional[str] = None
VLLM_ENGINE_ITERATION_TIMEOUT_S: int = 60
VLLM_API_KEY: Optional[str] = None
S3_ACCESS_KEY_ID: Optional[str] = None
S3_SECRET_ACCESS_KEY: Optional[str] = None
S3_ENDPOINT_URL: Optional[str] = None
VLLM_CONFIG_ROOT: str = ""
VLLM_USAGE_STATS_SERVER: str = "https://stats.vllm.ai"
VLLM_NO_USAGE_STATS: bool = False
VLLM_DO_NOT_TRACK: bool = False
VLLM_USAGE_SOURCE: str = ""
VLLM_CONFIGURE_LOGGING: int = 1
VLLM_LOGGING_LEVEL: str = "INFO"
VLLM_LOGGING_CONFIG_PATH: Optional[str] = None
VLLM_TRACE_FUNCTION: int = 0
VLLM_ATTENTION_BACKEND: Optional[str] = None
VLLM_CPU_KVCACHE_SPACE: int = 0
VLLM_XLA_CACHE_PATH: str = "~/.vllm/xla_cache/"
VLLM_USE_RAY_COMPILED_DAG: bool = False
VLLM_WORKER_MULTIPROC_METHOD: str = "fork"
VLLM_IMAGE_FETCH_TIMEOUT: int = 5
VLLM_TARGET_DEVICE: str = "cuda"
MAX_JOBS: Optional[str] = None
NVCC_THREADS: Optional[str] = None
VLLM_USE_PRECOMPILED: bool = False
VLLM_INSTALL_PUNICA_KERNELS: bool = False
CMAKE_BUILD_TYPE: Optional[str] = None
VERBOSE: bool = False
# The begin-* and end* here are used by the documentation generator
# to extract the used env vars.
# begin-env-vars-definition
environment_variables: Dict[str, Callable[[], Any]] = {
# ================== Installation Time Env Vars ==================
# Target device of vLLM, supporting [cuda (by default), rocm, neuron, cpu]
"VLLM_TARGET_DEVICE":
lambda: os.getenv("VLLM_TARGET_DEVICE", "cuda"),
# Maximum number of compilation jobs to run in parallel.
# By default this is the number of CPUs
"MAX_JOBS":
lambda: os.getenv("MAX_JOBS", None),
# Number of threads to use for nvcc
# By default this is 1.
# If set, `MAX_JOBS` will be reduced to avoid oversubscribing the CPU.
"NVCC_THREADS":
lambda: os.getenv("NVCC_THREADS", None),
# If set, vllm will use precompiled binaries (*.so)
"VLLM_USE_PRECOMPILED":
lambda: bool(os.environ.get("VLLM_USE_PRECOMPILED")),
# If set, vllm will install Punica kernels
"VLLM_INSTALL_PUNICA_KERNELS":
lambda: bool(int(os.getenv("VLLM_INSTALL_PUNICA_KERNELS", "0"))),
# CMake build type
# If not set, defaults to "Debug" or "RelWithDebInfo"
# Available options: "Debug", "Release", "RelWithDebInfo"
"CMAKE_BUILD_TYPE":
lambda: os.getenv("CMAKE_BUILD_TYPE"),
# If set, vllm will print verbose logs during installation
"VERBOSE":
lambda: bool(int(os.getenv('VERBOSE', '0'))),
# Root directory for VLLM configuration files
# Note that this not only affects how vllm finds its configuration files
# during runtime, but also affects how vllm installs its configuration
# files during **installation**.
"VLLM_CONFIG_ROOT":
lambda: os.environ.get("VLLM_CONFIG_ROOT", None) or os.getenv(
"XDG_CONFIG_HOME", None) or os.path.expanduser("~/.config"),
# ================== Runtime Env Vars ==================
# used in distributed environment to determine the master address
'VLLM_HOST_IP':
lambda: os.getenv('VLLM_HOST_IP', "") or os.getenv("HOST_IP", ""),
# used in distributed environment to manually set the communication port
# Note: if VLLM_PORT is set, and some code asks for multiple ports, the
# VLLM_PORT will be used as the first port, and the rest will be generated
# by incrementing the VLLM_PORT value.
# '0' is used to make mypy happy
'VLLM_PORT':
lambda: int(os.getenv('VLLM_PORT', '0'))
if 'VLLM_PORT' in os.environ else None,
# If true, will load models from ModelScope instead of Hugging Face Hub.
# note that the value is true or false, not numbers
"VLLM_USE_MODELSCOPE":
lambda: os.environ.get("VLLM_USE_MODELSCOPE", "False").lower() == "true",
# Instance id represents an instance of the VLLM. All processes in the same
# instance should have the same instance id.
"VLLM_INSTANCE_ID":
lambda: os.environ.get("VLLM_INSTANCE_ID", None),
# Interval in seconds to log a warning message when the ring buffer is full
"VLLM_RINGBUFFER_WARNING_INTERVAL":
lambda: int(os.environ.get("VLLM_RINGBUFFER_WARNING_INTERVAL", "60")),
# path to cudatoolkit home directory, under which should be bin, include,
# and lib directories.
"CUDA_HOME":
lambda: os.environ.get("CUDA_HOME", None),
# Path to the NCCL library file. It is needed because nccl>=2.19 brought
# by PyTorch contains a bug: https://github.com/NVIDIA/nccl/issues/1234
"VLLM_NCCL_SO_PATH":
lambda: os.environ.get("VLLM_NCCL_SO_PATH", None),
# when `VLLM_NCCL_SO_PATH` is not set, vllm will try to find the nccl
# library file in the locations specified by `LD_LIBRARY_PATH`
"LD_LIBRARY_PATH":
lambda: os.environ.get("LD_LIBRARY_PATH", None),
# flag to control if vllm should use triton flash attention
"VLLM_USE_TRITON_FLASH_ATTN":
lambda: (os.environ.get("VLLM_USE_TRITON_FLASH_ATTN", "True").lower() in
("true", "1")),
# local rank of the process in the distributed setting, used to determine
# the GPU device id
"LOCAL_RANK":
lambda: int(os.environ.get("LOCAL_RANK", "0")),
# used to control the visible devices in the distributed setting
"CUDA_VISIBLE_DEVICES":
lambda: os.environ.get("CUDA_VISIBLE_DEVICES", None),
# timeout for each iteration in the engine
"VLLM_ENGINE_ITERATION_TIMEOUT_S":
lambda: int(os.environ.get("VLLM_ENGINE_ITERATION_TIMEOUT_S", "60")),
# API key for VLLM API server
"VLLM_API_KEY":
lambda: os.environ.get("VLLM_API_KEY", None),
# S3 access information, used for tensorizer to load model from S3
"S3_ACCESS_KEY_ID":
lambda: os.environ.get("S3_ACCESS_KEY_ID", None),
"S3_SECRET_ACCESS_KEY":
lambda: os.environ.get("S3_SECRET_ACCESS_KEY", None),
"S3_ENDPOINT_URL":
lambda: os.environ.get("S3_ENDPOINT_URL", None),
# Usage stats collection
"VLLM_USAGE_STATS_SERVER":
lambda: os.environ.get("VLLM_USAGE_STATS_SERVER", "https://stats.vllm.ai"),
"VLLM_NO_USAGE_STATS":
lambda: os.environ.get("VLLM_NO_USAGE_STATS", "0") == "1",
"VLLM_DO_NOT_TRACK":
lambda: (os.environ.get("VLLM_DO_NOT_TRACK", None) or os.environ.get(
"DO_NOT_TRACK", None) or "0") == "1",
"VLLM_USAGE_SOURCE":
lambda: os.environ.get("VLLM_USAGE_SOURCE", "production"),
# Logging configuration
# If set to 0, vllm will not configure logging
# If set to 1, vllm will configure logging using the default configuration
# or the configuration file specified by VLLM_LOGGING_CONFIG_PATH
"VLLM_CONFIGURE_LOGGING":
lambda: int(os.getenv("VLLM_CONFIGURE_LOGGING", "1")),
"VLLM_LOGGING_CONFIG_PATH":
lambda: os.getenv("VLLM_LOGGING_CONFIG_PATH"),
# this is used for configuring the default logging level
"VLLM_LOGGING_LEVEL":
lambda: os.getenv("VLLM_LOGGING_LEVEL", "INFO"),
# Trace function calls
# If set to 1, vllm will trace function calls
# Useful for debugging
"VLLM_TRACE_FUNCTION":
lambda: int(os.getenv("VLLM_TRACE_FUNCTION", "0")),
# Backend for attention computation
# Available options:
# - "TORCH_SDPA": use torch.nn.MultiheadAttention
# - "FLASH_ATTN": use FlashAttention
# - "XFORMERS": use XFormers
# - "ROCM_FLASH": use ROCmFlashAttention
"VLLM_ATTENTION_BACKEND":
lambda: os.getenv("VLLM_ATTENTION_BACKEND", None),
# CPU key-value cache space
# default is 4GB
"VLLM_CPU_KVCACHE_SPACE":
lambda: int(os.getenv("VLLM_CPU_KVCACHE_SPACE", "0")),
# If the env var is set, it uses the Ray's compiled DAG API
# which optimizes the control plane overhead.
# Run vLLM with VLLM_USE_RAY_COMPILED_DAG=1 to enable it.
"VLLM_USE_RAY_COMPILED_DAG":
lambda: bool(os.getenv("VLLM_USE_RAY_COMPILED_DAG", 0)),
# Use dedicated multiprocess context for workers.
# Both spawn and fork work
"VLLM_WORKER_MULTIPROC_METHOD":
lambda: os.getenv("VLLM_WORKER_MULTIPROC_METHOD", "fork"),
# Timeout for fetching images when serving multimodal models
# Default is 5 seconds
"VLLM_IMAGE_FETCH_TIMEOUT":
lambda: int(os.getenv("VLLM_IMAGE_FETCH_TIMEOUT", "5")),
# Path to the XLA persistent cache directory.
# Only used for XLA devices such as TPUs.
"VLLM_XLA_CACHE_PATH":
lambda: os.getenv("VLLM_XLA_CACHE_PATH", "~/.vllm/xla_cache/"),
}
# end-env-vars-definition
def __getattr__(name):
# lazy evaluation of environment variables
if name in environment_variables:
return environment_variables[name]()
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
def __dir__():
return list(environment_variables.keys())