vllm/csrc/quantization/activation_kernels.cu
Wentao Ye bf68fd76a9
[Compile] Fix AMD Compile Error (#25518)
Signed-off-by: yewentao256 <zhyanwentao@126.com>
2025-09-24 00:42:48 +00:00

591 lines
22 KiB
Plaintext

#include <ATen/cuda/CUDAContext.h>
#include <torch/all.h>
#include <c10/cuda/CUDAGuard.h>
#include <cmath>
#include "core/math.hpp"
#include "../cuda_compat.h"
#include "dispatch_utils.h"
#include "quantization/fp8/common.cuh"
#include <c10/util/Float8_e4m3fn.h>
#ifndef USE_ROCM
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <cuda_fp8.h>
#else
#include <hip/hip_bf16.h>
#include <hip/hip_fp16.h>
#include <hip/hip_fp8.h>
typedef __hip_bfloat162 __nv_bfloat162;
typedef __hip_bfloat16 __nv_bfloat16;
typedef __hip_bfloat16_raw __nv_bfloat16_raw;
#if defined(HIP_FP8_TYPE_OCP)
typedef __hip_fp8_e4m3 __nv_fp8_e4m3;
typedef __hip_fp8x4_e4m3 __nv_fp8x4_e4m3;
#else
// ROCm 6.2 fallback: only *_fnuz types exist
typedef __hip_fp8_e4m3_fnuz __nv_fp8_e4m3;
typedef __hip_fp8x4_e4m3_fnuz __nv_fp8x4_e4m3;
#endif
#endif
#include "core/registration.h"
namespace vllm {
template <typename T>
__device__ __forceinline__ T silu_kernel(const T& x) {
// x * sigmoid(x)
return (T)(((float)x) / (1.0f + expf((float)-x)));
}
// Activation and gating kernel template.
template <typename scalar_t, scalar_t (*ACT_FN)(const scalar_t&),
typename fp8_type>
__global__ void act_and_mul_quant_kernel(
fp8_type* __restrict__ out, // [..., d]
const scalar_t* __restrict__ input, // [..., 2, d]
const float* scale, const int d) {
const int32_t blocks_per_token = gridDim.y;
const int32_t elems_per_128bit_load = (128 / 8) / sizeof(scalar_t);
// We don't expect the hidden dimension to exceed 32 bits so int32 should
// be safe here.
const int32_t tgt_elems_per_block = div_ceil(d, blocks_per_token);
const int32_t elems_per_block =
round_to_next_multiple_of(tgt_elems_per_block, elems_per_128bit_load);
const int32_t block_start = blockIdx.y * elems_per_block;
int32_t block_end = block_start + elems_per_block;
block_end = block_end > d ? d : block_end;
// token_idx is 64 bit to prevent 32 bit overflow when the number of tokens
// is very large
const int64_t token_idx = blockIdx.x;
const scalar_t* __restrict__ x_ptr = input + token_idx * 2 * d;
const scalar_t* __restrict__ y_ptr = input + token_idx * 2 * d + d;
fp8_type* __restrict__ out_ptr = out + token_idx * d;
// 128-bit vectorized code
const int32_t vec_loop_end =
round_to_previous_multiple_of(elems_per_128bit_load, block_end);
const int32_t vec_end_idx = vec_loop_end / elems_per_128bit_load;
const int32_t vec_start_idx = block_start / elems_per_128bit_load;
const int4* __restrict__ x_128bit_ptr = reinterpret_cast<const int4*>(x_ptr);
const int4* __restrict__ y_128bit_ptr = reinterpret_cast<const int4*>(y_ptr);
int2* __restrict__ out_128bit_ptr = reinterpret_cast<int2*>(out_ptr);
float inverted_scale = 1 / *scale;
#pragma unroll
for (int32_t vec_idx = vec_start_idx + threadIdx.x; vec_idx < vec_end_idx;
vec_idx += blockDim.x) {
const int4 x_128bit = VLLM_LDG(&x_128bit_ptr[vec_idx]);
const int4 y_128bit = VLLM_LDG(&y_128bit_ptr[vec_idx]);
using scalar_128bit_vec_t = std::array<scalar_t, elems_per_128bit_load>;
using scalar_64bit_vec_t = std::array<fp8_type, elems_per_128bit_load>;
scalar_64bit_vec_t out_vec;
const auto x_vec = reinterpret_cast<scalar_128bit_vec_t const&>(x_128bit);
const auto y_vec = reinterpret_cast<scalar_128bit_vec_t const&>(y_128bit);
#pragma unroll
for (int i = 0; i < elems_per_128bit_load; i++) {
out_vec[i] = scaled_fp8_conversion<true, fp8_type>(
ACT_FN(x_vec[i]) * y_vec[i], inverted_scale);
}
out_128bit_ptr[vec_idx] = reinterpret_cast<const int2&>(out_vec);
}
// Scalar cleanup code
if (block_end > vec_loop_end) {
for (int64_t idx = vec_loop_end + threadIdx.x; idx < block_end;
idx += blockDim.x) {
const scalar_t x = VLLM_LDG(&x_ptr[idx]);
const scalar_t y = VLLM_LDG(&y_ptr[idx]);
out_ptr[idx] =
scaled_fp8_conversion<true, fp8_type>(ACT_FN(x) * y, inverted_scale);
}
}
}
__device__ __forceinline__ float silu(float x) {
return (__fdividef(x, (1.f + expf(-x))));
}
__device__ __forceinline__ float2 silu2(float2 x) {
return make_float2(silu(x.x), silu(x.y));
}
#ifndef USE_ROCM
__device__ __forceinline__ float warp_max(float v) {
static constexpr unsigned FULL_MASK = 0xffffffffu;
for (int offset = 1; offset < WARP_SIZE; offset *= 2) {
v = fmaxf(v, __shfl_xor_sync(FULL_MASK, v, offset));
}
return v;
}
__device__ __forceinline__ __nv_bfloat16 warp_max(__nv_bfloat16 v) {
static constexpr unsigned FULL_MASK = 0xffffffffu;
for (int offset = 1; offset < WARP_SIZE; offset *= 2) {
v = __hmax(v, __shfl_xor_sync(FULL_MASK, v, offset));
}
return v;
}
#endif
template <typename T, typename U>
__device__ __forceinline__ void cp_async4(T* _smem_ptr, const U* _glob_ptr) {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
auto smem_ptr = reinterpret_cast<void*>(_smem_ptr);
auto glob_ptr = reinterpret_cast<const void*>(_glob_ptr);
const int BYTES = 16;
uint32_t smem = static_cast<uint32_t>(__cvta_generic_to_shared(smem_ptr));
asm volatile(
"{\n"
" cp.async.cg.shared.global [%0], [%1], %2;\n"
"}\n" ::"r"(smem),
"l"(glob_ptr), "n"(BYTES));
#else
_smem_ptr[0] = _glob_ptr[0];
#endif
}
__device__ __forceinline__ void cp_async_fence() {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
asm volatile("cp.async.commit_group;\n" ::);
#else
#endif
}
template <int N>
__device__ __forceinline__ void cp_async_wait() {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
asm volatile("cp.async.wait_group %0;\n" ::"n"(N));
#else
#endif
}
template <>
__device__ __forceinline__ void cp_async_wait<0>() {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
asm volatile("cp.async.wait_all;\n" ::);
#else
#endif
}
__device__ __forceinline__ float clip(float v, float mmin, float mmax) {
#if __CUDACC_VER_MAJOR__ >= 11 && __CUDA_ARCH__ >= 800
return fminf(mmax, fmaxf(v, mmin));
#else
#endif
}
__device__ __forceinline__ __nv_bfloat16 clip(__nv_bfloat16 v,
__nv_bfloat16 mmin,
__nv_bfloat16 mmax) {
return __hmin(mmax, __hmax(v, mmin));
}
__device__ __forceinline__ __nv_bfloat162 clip(__nv_bfloat162 v,
__nv_bfloat162 mmin,
__nv_bfloat162 mmax) {
return __hmin2(mmax, __hmax2(v, mmin));
}
// We use the following values for fp8 min/max:
// __nv_fp8_e4m3 = (-448, +448)
// __nv_fp8_e4m3uz = (-240.0, +240.0)
// It is currently assumed that only
template <class T>
constexpr __nv_bfloat16 get_fp8_max() {
static_assert(std::is_same_v<T, c10::Float8_e4m3fn> ||
std::is_same_v<T, c10::Float8_e4m3fnuz>);
if constexpr (std::is_same_v<T, c10::Float8_e4m3fn>) {
return __nv_bfloat16(__nv_bfloat16_raw{.x = 17376});
} else {
return __nv_bfloat16(__nv_bfloat16_raw{.x = 17264});
}
}
template <class T>
constexpr __nv_bfloat16 get_fp8_min() {
static_assert(std::is_same_v<T, c10::Float8_e4m3fn> ||
std::is_same_v<T, c10::Float8_e4m3fnuz>);
if constexpr (std::is_same_v<T, c10::Float8_e4m3fn>) {
return __nv_bfloat16(__nv_bfloat16_raw{.x = 50144});
} else {
return __nv_bfloat16(__nv_bfloat16_raw{.x = 50032});
}
}
#ifndef USE_ROCM
template <typename fp8_type, int32_t NUM_WARPS, typename Idx_t,
int NUM_PARALLEL_TOKENS, bool USE_UE8M0, int GROUP_SIZE = 128,
int NUM_STAGES = 3>
__global__ void silu_mul_fp8_quant_deep_gemm_kernel(
const __nv_bfloat16* __restrict__ _input, fp8_type* __restrict__ _y_q,
float* __restrict__ _y_s, const int32_t* __restrict__ counts,
// sizes
int H, int G,
// strides (in elements)
Idx_t stride_i_e, Idx_t stride_i_t, Idx_t stride_i_h, Idx_t stride_yq_e,
Idx_t stride_yq_t, Idx_t stride_yq_h, Idx_t stride_ys_e, Idx_t stride_ys_t,
Idx_t stride_ys_g, Idx_t stride_counts_e) {
static constexpr __nv_bfloat16 fp8_min = get_fp8_min<fp8_type>();
static constexpr __nv_bfloat16 fp8_max = get_fp8_max<fp8_type>();
// We assign EPS with its 16-bit unsigned counterpart to allow constexpr.
static constexpr __nv_bfloat16 EPS = (__nv_bfloat16_raw{.x = 11996});
// We pack 8 16-bit bfloat16 values into a 128-bit __int128_t.
static constexpr int32_t BFLOAT16_PER_GROUP = 8;
// We split the shared memory in half, corresponding to gate and up matrices:
// [...gate_i, ...up_i] where 0 <= i < stages.
static constexpr int32_t S_NUM_128 =
2u * (GROUP_SIZE / BFLOAT16_PER_GROUP) * NUM_WARPS * NUM_STAGES;
static constexpr auto THREAD_COUNT = NUM_WARPS * WARP_SIZE;
static constexpr int HALF_THREAD_COUNT = THREAD_COUNT / 2;
static constexpr int32_t S_NUM_64 = S_NUM_128 * 2;
__shared__ __int128_t __align__(16) s_buff_128[S_NUM_128];
const int32_t tid = threadIdx.x;
const int32_t warp_id = tid / WARP_SIZE;
const int32_t lane_id = tid % WARP_SIZE;
auto s_buff_compute_32 = reinterpret_cast<__nv_bfloat162*>(s_buff_128);
// block handles one (expert e, group g)
int32_t pid = blockIdx.x;
int32_t e = pid / G;
int32_t g = pid % G;
const int32_t n_tokens = counts[e * stride_counts_e];
if (!n_tokens) {
return; // Exit ASAP.
}
const Idx_t stride_i_t_128 = stride_i_t / 8u;
int32_t n_tokens_lower, n_tokens_upper;
// Each block i iterates over tokens of a slice of n_tokens =
// expert_counts[i], with the size of chunk being
// (n_tokens / NUM_PARALLEL_TOKENS) + residual, instead of
// updiv(n_tokens, NUM_PARALLEL_TOKENS) for better scheduling.
if (n_tokens < NUM_PARALLEL_TOKENS && blockIdx.y < n_tokens) {
// Specialize this, but can be likely fused.
if (blockIdx.y >= NUM_PARALLEL_TOKENS) {
return;
}
n_tokens_lower = blockIdx.y;
n_tokens_upper = blockIdx.y + 1;
} else {
auto chunk_size = n_tokens / NUM_PARALLEL_TOKENS;
auto residual = n_tokens - chunk_size * NUM_PARALLEL_TOKENS;
auto calc_id = [&](int32_t id) {
if (id < residual) {
return min(n_tokens, id * (chunk_size + 1));
} else {
return min(n_tokens, id * chunk_size + residual);
}
};
n_tokens_lower = calc_id(blockIdx.y);
n_tokens_upper = calc_id(blockIdx.y + 1);
}
if (n_tokens_lower >= n_tokens_upper) {
return;
}
// We do calculations here, using constexpr wherever possible.
const Idx_t base_i = e * stride_i_e + NUM_WARPS * g * GROUP_SIZE * stride_i_h;
const Idx_t base_ys = e * stride_ys_e + NUM_WARPS * g * stride_ys_g;
const Idx_t base_yq =
e * stride_yq_e + NUM_WARPS * g * GROUP_SIZE * stride_yq_h;
Idx_t gate_off_128 = (base_i / static_cast<Idx_t>(8u));
auto input_128_ptr = reinterpret_cast<const __int128_t*>(_input);
auto gate_128_ptr = input_128_ptr + gate_off_128 + (tid % HALF_THREAD_COUNT) +
stride_i_t_128 * n_tokens_lower;
auto up_128_ptr = gate_128_ptr + (H * stride_i_h) / 8u;
auto y_s_ptr =
_y_s + base_ys + warp_id * stride_ys_g + n_tokens_lower * stride_ys_t;
auto y_q_ptr = _y_q + base_yq + warp_id * GROUP_SIZE +
stride_yq_t * n_tokens_lower + 4 * lane_id;
int32_t t_load = n_tokens_lower, load_stage_id = 0;
auto s_buff_gate_load_128 = s_buff_128 + (tid % HALF_THREAD_COUNT);
auto s_buff_up_load_128 = s_buff_gate_load_128 + S_NUM_128 / 2u;
int32_t stage_offset{};
static constexpr int32_t LOAD_STAGE_SIZE = (NUM_WARPS * WARP_SIZE / 2);
static constexpr int32_t LOAD_STAGE_MOD =
NUM_STAGES * (NUM_WARPS * WARP_SIZE / 2);
// Two halves of all threads in a block conduct global loads for gate and up,
// repsectively.
auto load_and_advance_y_pred = [&] {
if (t_load < n_tokens_upper) {
auto s_gate_stage_128_staged_ptr = s_buff_gate_load_128 + stage_offset;
auto s_up_stage_128_staged_ptr = s_buff_up_load_128 + stage_offset;
// It is very important that LOAD_STAGE_SIZE is constexpr to avoid
// unnecessary ALU ops.
stage_offset += LOAD_STAGE_SIZE;
stage_offset %= LOAD_STAGE_MOD;
if (tid < HALF_THREAD_COUNT) {
cp_async4(s_gate_stage_128_staged_ptr, gate_128_ptr);
gate_128_ptr += stride_i_t_128;
} else {
cp_async4(s_up_stage_128_staged_ptr, up_128_ptr);
up_128_ptr += stride_i_t_128;
}
++t_load;
++load_stage_id;
}
// We fence even if there is nothing to load to simplify pipelining.
cp_async_fence();
};
#pragma unroll
for (int i = 0; i < NUM_STAGES - 1; i++) {
load_and_advance_y_pred();
}
__int64_t* s_gate_ptr = reinterpret_cast<__int64_t*>(
s_buff_compute_32 + warp_id * (GROUP_SIZE / 2)) +
lane_id;
__int64_t* s_up_ptr = s_gate_ptr + S_NUM_64 / 2;
static constexpr int32_t STAGE_SIZE = (GROUP_SIZE * NUM_WARPS) / 4u;
static constexpr int32_t STAGE_MOD = STAGE_SIZE * NUM_STAGES;
int32_t compute_pipeline_offset_64 = 0;
for (int32_t t = n_tokens_lower; t < n_tokens_upper; ++t) {
__nv_bfloat162 results_bf162[2];
cp_async_wait<NUM_STAGES - 2>();
__syncthreads();
// We double-buffer pipelined loads so that the next load will
// concurrently run with compute without overwrites.
load_and_advance_y_pred();
auto s_gate_compute_64 = s_gate_ptr + compute_pipeline_offset_64;
auto s_up_compute_64 = s_up_ptr + compute_pipeline_offset_64;
// STAGE_SIZE must also be constexpr!
compute_pipeline_offset_64 += STAGE_SIZE;
compute_pipeline_offset_64 %= STAGE_MOD;
// Each thread loads (gate/up) 2X 4X bfloat16 values into registers.
__int64_t gate64 = *s_gate_compute_64;
__nv_bfloat162* s_gate_compute_32 =
reinterpret_cast<__nv_bfloat162*>(&gate64);
__int64_t up64 = *s_up_compute_64;
__nv_bfloat162* s_up_compute_32 = reinterpret_cast<__nv_bfloat162*>(&up64);
#pragma unroll
for (int i = 0; i < 2; i++) {
// For silu, we make sure that div is emitted.
float2 gate = silu2(__bfloat1622float2(s_gate_compute_32[i]));
results_bf162[i] = __float22bfloat162_rn(gate);
}
#pragma unroll
for (int i = 0; i < 2; i++) {
results_bf162[i] = __hmul2(results_bf162[i], s_up_compute_32[i]);
}
auto _y_max2 =
__hmax2(__habs2(results_bf162[0]), __habs2(results_bf162[1]));
__nv_bfloat16 y_max_bf16 = __hmax(EPS, __hmax(_y_max2.x, _y_max2.y));
// An entire group is assigned to a single warp, so a simple warp reduce
// is used.
__nv_bfloat16 y_s = warp_max(y_max_bf16) / fp8_max;
if constexpr (USE_UE8M0) {
y_s = hexp2(hceil(hlog2(y_s)));
}
auto inv_y = __float2bfloat16_rn(1.f) / y_s;
auto y_s2 = make_bfloat162(inv_y, inv_y);
#pragma unroll
for (int32_t i = 0; i < 2; ++i) {
results_bf162[i] =
clip(__hmul2(results_bf162[i], y_s2), __bfloat162bfloat162(fp8_min),
__bfloat162bfloat162(fp8_max));
}
auto fp8x4 = __nv_fp8x4_e4m3(results_bf162[0], results_bf162[1]);
*reinterpret_cast<__nv_fp8x4_e4m3*>(y_q_ptr) = fp8x4;
y_q_ptr += stride_yq_t;
if (lane_id == 0) {
*y_s_ptr = y_s;
y_s_ptr += stride_ys_t;
}
}
}
#endif
} // namespace vllm
// Launch activation, gating, and quantize kernel.
#define LAUNCH_ACTIVATION_GATE_KERNEL(KERNEL) \
int d = input.size(-1) / 2; \
int64_t num_tokens = input.numel() / input.size(-1); \
dim3 grid(num_tokens, num_tokens > 16 ? num_tokens > 32 ? 1 : 2 : 4); \
dim3 block(std::min(d, 512)); \
const at::cuda::OptionalCUDAGuard device_guard(device_of(input)); \
const cudaStream_t stream = at::cuda::getCurrentCUDAStream(); \
VLLM_DISPATCH_FLOATING_TYPES( \
input.scalar_type(), "act_and_mul_kernel", [&] { \
VLLM_DISPATCH_FP8_TYPES( \
out.scalar_type(), "fused_add_rms_norm_kernel_fp8_type", [&] { \
vllm::act_and_mul_quant_kernel<scalar_t, KERNEL<scalar_t>, \
fp8_t> \
<<<grid, block, 0, stream>>>(out.data_ptr<fp8_t>(), \
input.data_ptr<scalar_t>(), \
scale.data_ptr<float>(), d); \
}); \
});
void silu_and_mul_quant(torch::Tensor& out, // [..., d]
torch::Tensor& input, // [..., 2 * d]
torch::Tensor& scale) {
TORCH_CHECK(out.dtype() == torch::kFloat8_e4m3fn ||
out.dtype() == torch::kFloat8_e4m3fnuz);
TORCH_CHECK(input.dtype() == torch::kFloat16 ||
input.dtype() == torch::kBFloat16);
TORCH_CHECK(input.size(-1) % 2 == 0);
LAUNCH_ACTIVATION_GATE_KERNEL(vllm::silu_kernel);
}
void silu_mul_fp8_quant_deep_gemm_cuda(
const at::Tensor& input, // (E, T, 2*H)
const at::Tensor& counts, // (E)
at::Tensor& y_q, // (E, T, H) [OUT]
at::Tensor& y_s, // (E, T, H//group_size) [OUT]
int64_t group_size, bool use_ue8m0, int64_t num_parallel_tokens) {
#ifndef USE_ROCM
// This kernel relies heavily on cp.async and fp8 support.
// This kernel currently only supports H % 128 == 0 and assumes a
// fixed GROUP_SIZE of 128.
TORCH_CHECK(input.dtype() == torch::kBFloat16);
TORCH_CHECK(y_q.dtype() == torch::kFloat8_e4m3fn ||
y_q.dtype() == torch::kFloat8_e4m3fnuz);
TORCH_CHECK(y_s.dtype() == torch::kFloat32);
TORCH_CHECK(input.size(-1) % 256 == 0);
// Check that num_parallel_tokens is of power of 2 and between 1 and 64.
TORCH_CHECK(1 <= num_parallel_tokens && num_parallel_tokens <= 64);
TORCH_CHECK(!(num_parallel_tokens & (num_parallel_tokens - 1)));
using Idx_t = int64_t;
Idx_t E = input.size(0);
Idx_t T = input.size(1);
Idx_t H = input.size(2) / 2;
Idx_t stride_i_e = input.stride(0);
Idx_t stride_i_t = input.stride(1);
Idx_t stride_i_h = input.stride(2);
Idx_t stride_yq_e = y_q.stride(0);
Idx_t stride_yq_t = y_q.stride(1);
Idx_t stride_yq_h = y_q.stride(2);
Idx_t stride_ys_e = y_s.stride(0);
Idx_t stride_ys_t = y_s.stride(1);
Idx_t stride_ys_g = y_s.stride(2);
Idx_t stride_counts_e = counts.stride(0);
static constexpr int GROUP_SIZE = 128;
#define KERNEL_FN \
if (use_ue8m0) { \
vllm::silu_mul_fp8_quant_deep_gemm_kernel<fp8_t, NUM_WARPS, Idx_t, \
NUM_PARALLEL_TOKENS, true> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<__nv_bfloat16*>(input.data_ptr()), \
(fp8_t*)y_q.data_ptr(), y_s.data_ptr<float>(), \
reinterpret_cast<int32_t*>(counts.data_ptr<int>()), H, G, \
stride_i_e, stride_i_t, stride_i_h, stride_yq_e, stride_yq_t, \
stride_yq_h, stride_ys_e, stride_ys_t, stride_ys_g, \
stride_counts_e); \
} else { \
vllm::silu_mul_fp8_quant_deep_gemm_kernel<fp8_t, NUM_WARPS, Idx_t, \
NUM_PARALLEL_TOKENS, false> \
<<<grid, block, 0, stream>>>( \
reinterpret_cast<__nv_bfloat16*>(input.data_ptr()), \
(fp8_t*)y_q.data_ptr(), y_s.data_ptr<float>(), \
reinterpret_cast<int32_t*>(counts.data_ptr<int>()), H, G, \
stride_i_e, stride_i_t, stride_i_h, stride_yq_e, stride_yq_t, \
stride_yq_h, stride_ys_e, stride_ys_t, stride_ys_g, \
stride_counts_e); \
}
#define KERNEL_CALL_H \
if (H % (4 * GROUP_SIZE) == 0) { \
static constexpr int NUM_WARPS = 4; \
populate_launch_params(NUM_WARPS, NUM_PARALLEL_TOKENS); \
KERNEL_FN \
} else { \
static constexpr int NUM_WARPS = 1; \
populate_launch_params(NUM_WARPS, NUM_PARALLEL_TOKENS); \
KERNEL_FN \
}
#define KERNEL_CALL_TOP_LEVEL \
if (num_parallel_tokens == 1) { \
static constexpr int NUM_PARALLEL_TOKENS = 1; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 2) { \
static constexpr int NUM_PARALLEL_TOKENS = 2; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 4) { \
static constexpr int NUM_PARALLEL_TOKENS = 4; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 8) { \
static constexpr int NUM_PARALLEL_TOKENS = 8; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 16) { \
static constexpr int NUM_PARALLEL_TOKENS = 16; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 32) { \
static constexpr int NUM_PARALLEL_TOKENS = 32; \
KERNEL_CALL_H \
} else if (num_parallel_tokens == 64) { \
static constexpr int NUM_PARALLEL_TOKENS = 64; \
KERNEL_CALL_H \
}
Idx_t G;
dim3 block, grid;
auto populate_launch_params = [&](int num_warps, int _num_parallel_tokens) {
G = H / Idx_t(group_size * num_warps);
grid = dim3(E * G, _num_parallel_tokens);
block = dim3(num_warps * WARP_SIZE);
};
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();
const at::cuda::OptionalCUDAGuard device_guard(device_of(input));
VLLM_DISPATCH_FP8_TYPES(y_q.scalar_type(),
"silu_mul_fp8_quant_deep_gemm_kernel",
[&] { KERNEL_CALL_TOP_LEVEL });
#endif
}