mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-24 05:25:01 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
251 lines
8.1 KiB
Python
251 lines
8.1 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from collections.abc import Iterable
|
|
from typing import TYPE_CHECKING, Any, Optional, TypeVar
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from .interfaces_base import VllmModelForPooling, is_pooling_model
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.model_executor.layers.pooler import PoolingType
|
|
|
|
_T = TypeVar("_T", bound=type[nn.Module])
|
|
|
|
_GENERATE_SUFFIXES = [
|
|
"ForCausalLM",
|
|
"ForConditionalGeneration",
|
|
"ChatModel",
|
|
"LMHeadModel",
|
|
]
|
|
|
|
|
|
def _get_pooling_model_name(orig_model_name: str, pooling_suffix: str) -> str:
|
|
model_name = orig_model_name
|
|
|
|
for generate_suffix in _GENERATE_SUFFIXES:
|
|
model_name = model_name.removesuffix(generate_suffix)
|
|
|
|
return model_name + pooling_suffix
|
|
|
|
|
|
def _create_pooling_model_cls(
|
|
orig_cls: _T,
|
|
*,
|
|
default_pooling_type: "PoolingType",
|
|
default_normalize: bool,
|
|
default_softmax: bool,
|
|
) -> _T:
|
|
# Lazy import
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.pooler import Pooler, PoolerOutput
|
|
from vllm.model_executor.pooling_metadata import PoolingMetadata
|
|
|
|
from .utils import AutoWeightsLoader, WeightsMapper
|
|
|
|
class ModelForPooling(orig_cls, VllmModelForPooling):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: "VllmConfig",
|
|
prefix: str = "",
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)
|
|
|
|
# These are not used in pooling models
|
|
for attr in ("lm_head", "logits_processor"):
|
|
if hasattr(self, attr):
|
|
delattr(self, attr)
|
|
|
|
pooler_config = vllm_config.model_config.pooler_config
|
|
assert pooler_config is not None
|
|
|
|
# If the model already defines a pooler instance, don't overwrite it
|
|
if not getattr(self, "_pooler", None):
|
|
self._pooler = Pooler.from_config_with_defaults(
|
|
pooler_config,
|
|
pooling_type=default_pooling_type,
|
|
normalize=default_normalize,
|
|
softmax=default_softmax,
|
|
)
|
|
|
|
def pooler(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> PoolerOutput:
|
|
return self._pooler(hidden_states, pooling_metadata)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
|
# TODO: Support uninitialized params tracking
|
|
|
|
# We have deleted this attribute, so don't load it
|
|
weights = ((name, data) for name, data in weights
|
|
if not name.startswith("lm_head."))
|
|
|
|
# If `*ForCausalLM` defines `load_weights` on the inner model
|
|
# and there are no other inner modules with parameters,
|
|
# we support loading from both `*Model` and `*ForCausalLM`
|
|
if hasattr(self, "model") and hasattr(self.model, "load_weights"):
|
|
# Whether only `self.model` contains parameters
|
|
model_is_only_param = all(
|
|
name == "model" or next(child.parameters(), None) is None
|
|
for name, child in self.named_children())
|
|
|
|
if model_is_only_param:
|
|
mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
|
|
weights = mapper.apply(weights)
|
|
|
|
self.model.load_weights(weights)
|
|
return
|
|
|
|
# For most other models
|
|
if hasattr(orig_cls, "load_weights"):
|
|
orig_cls.load_weights(self, weights) # type: ignore
|
|
# Fallback
|
|
else:
|
|
loader = AutoWeightsLoader(self)
|
|
loader.load_weights(weights)
|
|
|
|
return ModelForPooling # type: ignore
|
|
|
|
|
|
def as_embedding_model(cls: _T) -> _T:
|
|
"""
|
|
Subclass an existing vLLM model to support embeddings.
|
|
|
|
By default, the embeddings of the whole prompt are extracted from the
|
|
normalized hidden state corresponding to the last token.
|
|
|
|
Note:
|
|
We assume that no extra layers are added to the original model;
|
|
please implement your own model if this is not the case.
|
|
"""
|
|
# Avoid modifying existing embedding models
|
|
if is_pooling_model(cls):
|
|
return cls
|
|
|
|
# Lazy import
|
|
from vllm.model_executor.layers.pooler import PoolingType
|
|
|
|
ModelForEmbedding = _create_pooling_model_cls(
|
|
cls,
|
|
default_pooling_type=PoolingType.LAST,
|
|
default_normalize=True,
|
|
default_softmax=False,
|
|
)
|
|
ModelForEmbedding.__name__ = \
|
|
_get_pooling_model_name(cls.__name__, "ForEmbedding")
|
|
|
|
return ModelForEmbedding # type: ignore
|
|
|
|
|
|
def as_classification_model(cls: _T) -> _T:
|
|
"""
|
|
Subclass an existing vLLM model to support classification.
|
|
|
|
By default, the class probabilities are extracted from the softmaxed
|
|
hidden state corresponding to the last token.
|
|
|
|
Note:
|
|
We assume that the classification head is a single linear layer
|
|
stored as the attribute `score` of the top-level model;
|
|
please implement your own model if this is not the case.
|
|
"""
|
|
# Avoid modifying existing classification models
|
|
if is_pooling_model(cls):
|
|
return cls
|
|
|
|
# Lazy import
|
|
from vllm.attention import AttentionMetadata
|
|
from vllm.config import VllmConfig
|
|
from vllm.model_executor.layers.linear import RowParallelLinear
|
|
from vllm.model_executor.layers.pooler import PoolingType
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
from .utils import maybe_prefix
|
|
|
|
ModelForPooling = _create_pooling_model_cls(
|
|
cls,
|
|
default_pooling_type=PoolingType.LAST,
|
|
default_normalize=False,
|
|
default_softmax=True,
|
|
)
|
|
|
|
class ModelForClassification(ModelForPooling):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
vllm_config: "VllmConfig",
|
|
prefix: str = "",
|
|
**kwargs: Any,
|
|
) -> None:
|
|
super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
self.score = RowParallelLinear(config.hidden_size,
|
|
config.num_labels,
|
|
quant_config=quant_config,
|
|
input_is_parallel=False,
|
|
bias=False,
|
|
prefix=maybe_prefix(
|
|
prefix, "score"))
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
kv_caches: list[torch.Tensor],
|
|
attn_metadata: AttentionMetadata,
|
|
intermediate_tensors: Optional[IntermediateTensors] = None,
|
|
inputs_embeds: Optional[torch.Tensor] = None,
|
|
) -> torch.Tensor:
|
|
hidden_states = super().forward(input_ids, positions, kv_caches,
|
|
attn_metadata,
|
|
intermediate_tensors,
|
|
inputs_embeds)
|
|
logits, _ = self.score(hidden_states)
|
|
return logits
|
|
|
|
|
|
ModelForClassification.__name__ = \
|
|
_get_pooling_model_name(cls.__name__, "ForClassification")
|
|
|
|
return ModelForClassification # type: ignore
|
|
|
|
|
|
def as_reward_model(cls: _T) -> _T:
|
|
"""
|
|
Subclass an existing vLLM model to support reward modeling.
|
|
|
|
By default, we return the hidden states of each token directly.
|
|
|
|
Note:
|
|
We assume that no extra layers are added to the original model;
|
|
please implement your own model if this is not the case.
|
|
"""
|
|
# Avoid modifying existing reward models
|
|
if is_pooling_model(cls):
|
|
return cls
|
|
|
|
# Lazy import
|
|
from vllm.model_executor.layers.pooler import PoolingType
|
|
|
|
ModelForReward = _create_pooling_model_cls(
|
|
cls,
|
|
default_pooling_type=PoolingType.ALL,
|
|
default_normalize=False,
|
|
default_softmax=False,
|
|
)
|
|
|
|
ModelForReward.__name__ = \
|
|
_get_pooling_model_name(cls.__name__, "ForReward")
|
|
|
|
return ModelForReward # type: ignore
|