Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

251 lines
8.1 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from collections.abc import Iterable
from typing import TYPE_CHECKING, Any, Optional, TypeVar
import torch
import torch.nn as nn
from .interfaces_base import VllmModelForPooling, is_pooling_model
if TYPE_CHECKING:
from vllm.model_executor.layers.pooler import PoolingType
_T = TypeVar("_T", bound=type[nn.Module])
_GENERATE_SUFFIXES = [
"ForCausalLM",
"ForConditionalGeneration",
"ChatModel",
"LMHeadModel",
]
def _get_pooling_model_name(orig_model_name: str, pooling_suffix: str) -> str:
model_name = orig_model_name
for generate_suffix in _GENERATE_SUFFIXES:
model_name = model_name.removesuffix(generate_suffix)
return model_name + pooling_suffix
def _create_pooling_model_cls(
orig_cls: _T,
*,
default_pooling_type: "PoolingType",
default_normalize: bool,
default_softmax: bool,
) -> _T:
# Lazy import
from vllm.config import VllmConfig
from vllm.model_executor.layers.pooler import Pooler, PoolerOutput
from vllm.model_executor.pooling_metadata import PoolingMetadata
from .utils import AutoWeightsLoader, WeightsMapper
class ModelForPooling(orig_cls, VllmModelForPooling):
def __init__(
self,
*,
vllm_config: "VllmConfig",
prefix: str = "",
**kwargs: Any,
) -> None:
super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)
# These are not used in pooling models
for attr in ("lm_head", "logits_processor"):
if hasattr(self, attr):
delattr(self, attr)
pooler_config = vllm_config.model_config.pooler_config
assert pooler_config is not None
# If the model already defines a pooler instance, don't overwrite it
if not getattr(self, "_pooler", None):
self._pooler = Pooler.from_config_with_defaults(
pooler_config,
pooling_type=default_pooling_type,
normalize=default_normalize,
softmax=default_softmax,
)
def pooler(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> PoolerOutput:
return self._pooler(hidden_states, pooling_metadata)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
# TODO: Support uninitialized params tracking
# We have deleted this attribute, so don't load it
weights = ((name, data) for name, data in weights
if not name.startswith("lm_head."))
# If `*ForCausalLM` defines `load_weights` on the inner model
# and there are no other inner modules with parameters,
# we support loading from both `*Model` and `*ForCausalLM`
if hasattr(self, "model") and hasattr(self.model, "load_weights"):
# Whether only `self.model` contains parameters
model_is_only_param = all(
name == "model" or next(child.parameters(), None) is None
for name, child in self.named_children())
if model_is_only_param:
mapper = WeightsMapper(orig_to_new_prefix={"model.": ""})
weights = mapper.apply(weights)
self.model.load_weights(weights)
return
# For most other models
if hasattr(orig_cls, "load_weights"):
orig_cls.load_weights(self, weights) # type: ignore
# Fallback
else:
loader = AutoWeightsLoader(self)
loader.load_weights(weights)
return ModelForPooling # type: ignore
def as_embedding_model(cls: _T) -> _T:
"""
Subclass an existing vLLM model to support embeddings.
By default, the embeddings of the whole prompt are extracted from the
normalized hidden state corresponding to the last token.
Note:
We assume that no extra layers are added to the original model;
please implement your own model if this is not the case.
"""
# Avoid modifying existing embedding models
if is_pooling_model(cls):
return cls
# Lazy import
from vllm.model_executor.layers.pooler import PoolingType
ModelForEmbedding = _create_pooling_model_cls(
cls,
default_pooling_type=PoolingType.LAST,
default_normalize=True,
default_softmax=False,
)
ModelForEmbedding.__name__ = \
_get_pooling_model_name(cls.__name__, "ForEmbedding")
return ModelForEmbedding # type: ignore
def as_classification_model(cls: _T) -> _T:
"""
Subclass an existing vLLM model to support classification.
By default, the class probabilities are extracted from the softmaxed
hidden state corresponding to the last token.
Note:
We assume that the classification head is a single linear layer
stored as the attribute `score` of the top-level model;
please implement your own model if this is not the case.
"""
# Avoid modifying existing classification models
if is_pooling_model(cls):
return cls
# Lazy import
from vllm.attention import AttentionMetadata
from vllm.config import VllmConfig
from vllm.model_executor.layers.linear import RowParallelLinear
from vllm.model_executor.layers.pooler import PoolingType
from vllm.sequence import IntermediateTensors
from .utils import maybe_prefix
ModelForPooling = _create_pooling_model_cls(
cls,
default_pooling_type=PoolingType.LAST,
default_normalize=False,
default_softmax=True,
)
class ModelForClassification(ModelForPooling):
def __init__(
self,
*,
vllm_config: "VllmConfig",
prefix: str = "",
**kwargs: Any,
) -> None:
super().__init__(vllm_config=vllm_config, prefix=prefix, **kwargs)
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.score = RowParallelLinear(config.hidden_size,
config.num_labels,
quant_config=quant_config,
input_is_parallel=False,
bias=False,
prefix=maybe_prefix(
prefix, "score"))
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
kv_caches: list[torch.Tensor],
attn_metadata: AttentionMetadata,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
) -> torch.Tensor:
hidden_states = super().forward(input_ids, positions, kv_caches,
attn_metadata,
intermediate_tensors,
inputs_embeds)
logits, _ = self.score(hidden_states)
return logits
ModelForClassification.__name__ = \
_get_pooling_model_name(cls.__name__, "ForClassification")
return ModelForClassification # type: ignore
def as_reward_model(cls: _T) -> _T:
"""
Subclass an existing vLLM model to support reward modeling.
By default, we return the hidden states of each token directly.
Note:
We assume that no extra layers are added to the original model;
please implement your own model if this is not the case.
"""
# Avoid modifying existing reward models
if is_pooling_model(cls):
return cls
# Lazy import
from vllm.model_executor.layers.pooler import PoolingType
ModelForReward = _create_pooling_model_cls(
cls,
default_pooling_type=PoolingType.ALL,
default_normalize=False,
default_softmax=False,
)
ModelForReward.__name__ = \
_get_pooling_model_name(cls.__name__, "ForReward")
return ModelForReward # type: ignore