mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 06:15:01 +08:00
698 lines
26 KiB
Python
698 lines
26 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Inference-only AfMoE model compatible with HuggingFace weights."""
|
|
|
|
import typing
|
|
from collections.abc import Callable, Iterable
|
|
from itertools import islice
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention.backends.abstract import AttentionType
|
|
from vllm.attention.layer import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, VllmConfig, get_current_vllm_config
|
|
from vllm.distributed import (
|
|
get_ep_group,
|
|
get_pp_group,
|
|
get_tensor_model_parallel_world_size,
|
|
)
|
|
from vllm.logger import init_logger
|
|
from vllm.model_executor.layers.fused_moe.shared_fused_moe import SharedFusedMoE
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.model_executor.models.interfaces import SupportsLoRA, SupportsPP
|
|
from vllm.model_executor.models.llama import LlamaMLP as AfmoeMLP
|
|
from vllm.model_executor.models.utils import (
|
|
AutoWeightsLoader,
|
|
PPMissingLayer,
|
|
WeightsMapper,
|
|
extract_layer_index,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
)
|
|
from vllm.sequence import IntermediateTensors
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class AfmoeMoE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config, # AfmoeConfig
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
enable_eplb: bool = False,
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.route_scale = config.route_scale
|
|
self.score_func = config.score_func
|
|
self.route_norm = config.route_norm
|
|
|
|
self.ep_group = get_ep_group().device_group
|
|
self.ep_rank = self.ep_group.rank()
|
|
self.ep_size = self.ep_group.size()
|
|
self.n_routed_experts: int = config.num_experts
|
|
self.n_shared_experts: int = config.num_shared_experts
|
|
|
|
if config.hidden_act != "silu":
|
|
raise ValueError(
|
|
f"Unsupported activation: {config.hidden_act}. "
|
|
"Only silu is supported for now."
|
|
)
|
|
|
|
# Router gate
|
|
self.gate = nn.Linear(
|
|
config.hidden_size,
|
|
config.num_experts,
|
|
bias=False,
|
|
dtype=torch.float32,
|
|
)
|
|
self.expert_bias = nn.Parameter(
|
|
torch.empty(config.num_experts, dtype=torch.float32)
|
|
)
|
|
|
|
# Load balancing settings
|
|
vllm_config = get_current_vllm_config()
|
|
eplb_config = vllm_config.parallel_config.eplb_config
|
|
self.enable_eplb = enable_eplb
|
|
|
|
self.n_redundant_experts = eplb_config.num_redundant_experts
|
|
self.n_logical_experts = self.n_routed_experts
|
|
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
|
|
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
|
|
|
|
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
|
|
self.physical_expert_end = (
|
|
self.physical_expert_start + self.n_local_physical_experts
|
|
)
|
|
|
|
self.shared_experts = None
|
|
# Shared experts
|
|
if config.num_shared_experts > 0:
|
|
intermediate_size = config.moe_intermediate_size * config.num_shared_experts
|
|
self.shared_experts = AfmoeMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
reduce_results=False,
|
|
prefix=f"{prefix}.shared_experts",
|
|
)
|
|
|
|
# Routed experts using SharedFusedMoE
|
|
self.experts = SharedFusedMoE(
|
|
shared_experts=self.shared_experts,
|
|
num_experts=config.num_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.moe_intermediate_size,
|
|
reduce_results=False,
|
|
renormalize=self.route_norm if self.score_func == "sigmoid" else False,
|
|
quant_config=quant_config,
|
|
use_grouped_topk=True,
|
|
num_expert_group=config.n_group,
|
|
topk_group=config.topk_group,
|
|
prefix=f"{prefix}.experts",
|
|
scoring_func=self.score_func,
|
|
routed_scaling_factor=self.route_scale,
|
|
e_score_correction_bias=self.expert_bias,
|
|
enable_eplb=self.enable_eplb,
|
|
num_redundant_experts=self.n_redundant_experts,
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
num_tokens, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
router_logits = self.gate(hidden_states.to(dtype=torch.float32))
|
|
|
|
fused_moe_out = self.experts(
|
|
hidden_states=hidden_states, router_logits=router_logits
|
|
)
|
|
|
|
if self.shared_experts is not None:
|
|
shared_output, final_hidden_states = fused_moe_out
|
|
final_hidden_states = final_hidden_states + shared_output
|
|
else:
|
|
final_hidden_states = fused_moe_out
|
|
if self.tp_size > 1:
|
|
final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel(
|
|
final_hidden_states
|
|
)
|
|
|
|
return final_hidden_states.view(num_tokens, hidden_dim)
|
|
|
|
|
|
class AfmoeAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config, # AfmoeConfig
|
|
layer_idx: int,
|
|
hidden_size: int,
|
|
num_heads: int,
|
|
num_kv_heads: int,
|
|
max_position_embeddings: int = 131072,
|
|
head_dim: int | None = None,
|
|
rms_norm_eps: float = 1e-05,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
attn_type: str = AttentionType.DECODER,
|
|
) -> None:
|
|
super().__init__()
|
|
self.layer_idx = layer_idx
|
|
self.hidden_size = hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = num_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = num_kv_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
self.head_dim = head_dim or (hidden_size // self.total_num_heads)
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
self.max_position_embeddings = max_position_embeddings
|
|
|
|
# Check if this is a local attention layer
|
|
self.is_local_attention = config.layer_types[layer_idx] == "sliding_attention"
|
|
self.sliding_window = config.sliding_window if self.is_local_attention else None
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
self.hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
self.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
# Gating projection
|
|
self.gate_proj = ColumnParallelLinear(
|
|
hidden_size,
|
|
self.total_num_heads * self.head_dim,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.gate_proj",
|
|
)
|
|
|
|
# Q/K normalization
|
|
self.q_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
self.k_norm = RMSNorm(self.head_dim, eps=config.rms_norm_eps)
|
|
|
|
# Only create rotary embeddings for local attention
|
|
if self.is_local_attention:
|
|
self.rotary_emb = get_rope(
|
|
self.head_dim,
|
|
rotary_dim=self.head_dim,
|
|
max_position=max_position_embeddings,
|
|
rope_parameters=config["rope_parameters"],
|
|
is_neox_style=True,
|
|
)
|
|
else:
|
|
self.rotary_emb = None
|
|
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
per_layer_sliding_window=self.sliding_window,
|
|
prefix=f"{prefix}.attn",
|
|
attn_type=attn_type,
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
gate, _ = self.gate_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
|
|
# Apply Q/K normalization
|
|
q = self.q_norm(q.reshape(-1, self.num_heads, self.head_dim)).reshape(q.shape)
|
|
k = self.k_norm(k.reshape(-1, self.num_kv_heads, self.head_dim)).reshape(
|
|
k.shape
|
|
)
|
|
|
|
# Apply rotary embeddings only for local attention
|
|
if self.is_local_attention and self.rotary_emb is not None:
|
|
q, k = self.rotary_emb(positions, q, k)
|
|
|
|
attn_output = self.attn(q, k, v)
|
|
|
|
# Apply gating
|
|
attn_output = attn_output * torch.sigmoid(gate)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class AfmoeDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config, # AfmoeConfig
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
enable_eplb: bool = False,
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
max_position_embeddings = getattr(config, "max_position_embeddings", 131072)
|
|
|
|
# DecoderLayers are created with `make_layers` which passes the prefix
|
|
# with the layer's index.
|
|
self.layer_idx = extract_layer_index(prefix)
|
|
|
|
self.self_attn = AfmoeAttention(
|
|
config=config,
|
|
layer_idx=self.layer_idx,
|
|
hidden_size=self.hidden_size,
|
|
num_heads=config.num_attention_heads,
|
|
num_kv_heads=config.num_key_value_heads,
|
|
max_position_embeddings=max_position_embeddings,
|
|
head_dim=config.head_dim,
|
|
rms_norm_eps=config.rms_norm_eps,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.self_attn",
|
|
)
|
|
|
|
# MoE or dense FFN
|
|
self.moe_enabled = self.layer_idx >= config.num_dense_layers
|
|
if self.moe_enabled:
|
|
self.mlp = AfmoeMoE(
|
|
config=config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
enable_eplb=enable_eplb,
|
|
)
|
|
else:
|
|
self.mlp = AfmoeMLP(
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.intermediate_size,
|
|
hidden_act=config.hidden_act,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mlp",
|
|
)
|
|
|
|
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_attention_layernorm = RMSNorm(
|
|
config.hidden_size, eps=config.rms_norm_eps
|
|
)
|
|
self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
self.post_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.input_layernorm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.input_layernorm(hidden_states, residual)
|
|
|
|
hidden_states = self.self_attn(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
)
|
|
hidden_states = self.post_attention_layernorm(hidden_states) # attn norm b
|
|
|
|
# Fully Connected
|
|
hidden_states, residual = self.pre_mlp_layernorm( # ffn norm a
|
|
hidden_states, residual
|
|
)
|
|
hidden_states = self.mlp(hidden_states)
|
|
hidden_states = self.post_mlp_layernorm(hidden_states) # ffn norm b
|
|
|
|
return hidden_states, residual
|
|
|
|
|
|
@support_torch_compile(
|
|
dynamic_arg_dims={
|
|
"input_ids": 0,
|
|
"positions": -1,
|
|
"intermediate_tensors": 0,
|
|
"inputs_embeds": 0,
|
|
}
|
|
)
|
|
class AfmoeModel(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config = vllm_config.model_config.hf_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
enable_eplb = vllm_config.parallel_config.enable_eplb
|
|
self.config = config
|
|
|
|
self.vocab_size = config.vocab_size
|
|
self.mup_enabled = config.mup_enabled
|
|
|
|
if get_pp_group().is_first_rank:
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
config.vocab_size, config.hidden_size, prefix=f"{prefix}.embed_tokens"
|
|
)
|
|
else:
|
|
self.embed_tokens = PPMissingLayer()
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
config.num_hidden_layers,
|
|
lambda prefix: AfmoeDecoderLayer(
|
|
config=config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=prefix,
|
|
enable_eplb=enable_eplb,
|
|
),
|
|
prefix=f"{prefix}.layers",
|
|
)
|
|
|
|
if get_pp_group().is_last_rank:
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
else:
|
|
self.norm = PPMissingLayer()
|
|
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.embed_input_ids(input_ids)
|
|
|
|
# Apply muP input scaling if enabled
|
|
if self.mup_enabled:
|
|
hidden_states = hidden_states * (self.config.hidden_size**0.5)
|
|
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
for layer in islice(self.layers, self.start_layer, self.end_layer):
|
|
hidden_states, residual = layer(positions, hidden_states, residual)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
def make_empty_intermediate_tensors(
|
|
self, batch_size: int, dtype: torch.dtype, device: torch.device
|
|
) -> IntermediateTensors:
|
|
return IntermediateTensors(
|
|
{
|
|
"hidden_states": torch.zeros(
|
|
(batch_size, self.config.hidden_size), dtype=dtype, device=device
|
|
),
|
|
"residual": torch.zeros(
|
|
(batch_size, self.config.hidden_size), dtype=dtype, device=device
|
|
),
|
|
}
|
|
)
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
return SharedFusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=self.config.num_experts,
|
|
)
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
("gate_up_proj", "gate_proj", 0),
|
|
("gate_up_proj", "up_proj", 1),
|
|
]
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
expert_params_mapping = self.get_expert_mapping()
|
|
|
|
for name, loaded_weight in weights:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
# Skip non-stacked layers and experts (experts handled below).
|
|
if (weight_name not in name) or ("self_attn.gate_proj" in name):
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if ("mlp.experts." in name) and name not in params_dict:
|
|
continue
|
|
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
else:
|
|
is_expert_weight = False
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
|
|
# Anyway, this is an expert weight and should not be
|
|
# attempted to load as other weights later
|
|
is_expert_weight = True
|
|
|
|
# Do not modify `name` since the loop may continue here
|
|
# Instead, create a new variable
|
|
name_mapped = name.replace(weight_name, param_name)
|
|
|
|
if is_pp_missing_parameter(name_mapped, self):
|
|
continue
|
|
|
|
param = params_dict[name_mapped]
|
|
# We should ask the weight loader to return success or not
|
|
# here since otherwise we may skip experts with other
|
|
# available replicas.
|
|
weight_loader = typing.cast(
|
|
Callable[..., bool], param.weight_loader
|
|
)
|
|
success = weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name_mapped,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
return_success=True,
|
|
)
|
|
if success:
|
|
name = name_mapped
|
|
break
|
|
else:
|
|
if is_expert_weight:
|
|
# We've checked that this is an expert weight
|
|
# However it's not mapped locally to this rank
|
|
# So we simply skip it
|
|
continue
|
|
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
loaded_params.add(name)
|
|
|
|
return loaded_params
|
|
|
|
|
|
class AfmoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA):
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
"gate_up_proj": [
|
|
"gate_proj",
|
|
"up_proj",
|
|
],
|
|
}
|
|
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_suffix={
|
|
".router.gate.weight": ".gate.weight",
|
|
},
|
|
)
|
|
|
|
fall_back_to_pt_during_load = False
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
config = vllm_config.model_config.hf_config
|
|
quant_config = vllm_config.quant_config
|
|
self.config = config
|
|
self.quant_config = quant_config
|
|
self.model = AfmoeModel(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size, config.hidden_size, quant_config=quant_config
|
|
)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
self.expert_weights = []
|
|
|
|
# Set MoE hyperparameters
|
|
self.num_moe_layers = config.num_hidden_layers - config.num_dense_layers
|
|
self.num_expert_groups = config.n_group
|
|
|
|
self.moe_layers: list[SharedFusedMoE] = []
|
|
example_moe = None
|
|
for layer in self.model.layers:
|
|
if isinstance(layer, PPMissingLayer):
|
|
continue
|
|
|
|
assert isinstance(layer, AfmoeDecoderLayer)
|
|
if layer.moe_enabled:
|
|
example_moe = layer.mlp
|
|
self.moe_layers.append(layer.mlp.experts)
|
|
|
|
if example_moe is None and self.num_moe_layers > 0:
|
|
raise RuntimeError("No AfmoeMoE layer found in model.layers.")
|
|
|
|
if example_moe is not None:
|
|
self.num_logical_experts = example_moe.n_logical_experts
|
|
self.num_physical_experts = example_moe.n_physical_experts
|
|
self.num_local_physical_experts = example_moe.n_local_physical_experts
|
|
self.num_routed_experts = example_moe.n_routed_experts
|
|
self.num_shared_experts = example_moe.n_shared_experts
|
|
self.num_redundant_experts = example_moe.n_redundant_experts
|
|
|
|
def set_eplb_state(
|
|
self,
|
|
expert_load_view: torch.Tensor,
|
|
logical_to_physical_map: torch.Tensor,
|
|
logical_replica_count: torch.Tensor,
|
|
) -> None:
|
|
for layer_idx, layer in enumerate(self.moe_layers):
|
|
# Register the expert weights.
|
|
self.expert_weights.append(layer.get_expert_weights())
|
|
layer.set_eplb_state(
|
|
moe_layer_idx=layer_idx,
|
|
expert_load_view=expert_load_view,
|
|
logical_to_physical_map=logical_to_physical_map,
|
|
logical_replica_count=logical_replica_count,
|
|
)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
hidden_states = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
|
|
return self.model.get_expert_mapping()
|