mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-17 06:55:01 +08:00
146 lines
6.2 KiB
Python
146 lines
6.2 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
import os
|
|
import sys
|
|
from abc import abstractmethod
|
|
from contextlib import contextmanager
|
|
from types import CodeType
|
|
from typing import Callable, Optional
|
|
|
|
import torch
|
|
|
|
import vllm.envs as envs
|
|
from vllm.config import CompilationLevel, get_current_vllm_config
|
|
from vllm.logger import init_logger
|
|
|
|
logger = init_logger(__name__)
|
|
|
|
|
|
class TorchCompileWrapperWithCustomDispatcher:
|
|
"""
|
|
A wrapper class for torch.compile, with a custom dispatch logic.
|
|
Subclasses should:
|
|
1. Implement the forward method
|
|
2. Implement the dispatch logic in the __call__ method
|
|
It can use `self.compiled_codes` to access the compiled bytecode,
|
|
and `with self.dispatch_to_code(index):` to dispatch to
|
|
the compiled code.
|
|
3. Implement the `__init__` method to determine how to call
|
|
`torch.compile` over the forward method.
|
|
"""
|
|
|
|
def __init__(self,
|
|
compiled_callable: Optional[Callable] = None,
|
|
compilation_level: int = 0):
|
|
|
|
vllm_config = get_current_vllm_config()
|
|
self.vllm_config = vllm_config
|
|
if compiled_callable is None:
|
|
# default compilation settings
|
|
# compiling the forward method
|
|
|
|
backend = vllm_config.compilation_config.init_backend(vllm_config)
|
|
options = None
|
|
if isinstance(backend, str) and backend == "inductor":
|
|
options = get_current_vllm_config(
|
|
).compilation_config.inductor_compile_config
|
|
|
|
compiled_callable = torch.compile(
|
|
self.forward,
|
|
fullgraph=envs.VLLM_TEST_DYNAMO_FULLGRAPH_CAPTURE,
|
|
backend=backend,
|
|
options=options)
|
|
|
|
self.compiled_callable = compiled_callable
|
|
self.original_code_object = self.__class__.forward.__code__
|
|
self.compiled_codes: list[CodeType] = []
|
|
torch._dynamo.convert_frame.register_bytecode_hook(self.bytecode_hook)
|
|
|
|
# read the env var to determine whether to use the custom dispatcher
|
|
# subclasses can use this to switch between the custom dispatcher
|
|
# and the default Dynamo guard mechanism.
|
|
self.use_custom_dispatcher: bool = \
|
|
compilation_level >= CompilationLevel.DYNAMO_ONCE
|
|
|
|
def __call__(self, *args, **kwargs):
|
|
"""Implement the dispatch logic here, beyond the torch.compile level.
|
|
NOTE: this function can have additional arguments beyond the forward
|
|
method, for directly dispatching to the compiled code.
|
|
"""
|
|
return self.compiled_callable(*args, **kwargs)
|
|
|
|
@abstractmethod
|
|
def forward(self, *args, **kwargs):
|
|
...
|
|
|
|
def bytecode_hook(self, old_code: CodeType, new_code: CodeType):
|
|
"""Hook to save the compiled bytecode for direct execution."""
|
|
if old_code is not self.original_code_object:
|
|
return
|
|
# code borrowed from https://github.com/thuml/depyf/blob/f4ad79fadee27ea113b4c75202db1eb1a11c0dbc/depyf/explain/enable_debugging.py#L25
|
|
frame = sys._getframe()
|
|
while frame and frame.f_back:
|
|
frame = frame.f_back
|
|
code_name = frame.f_code.co_name
|
|
file_name = frame.f_code.co_filename.split(os.path.sep)[-1]
|
|
if code_name == "_compile" and file_name == "convert_frame.py":
|
|
break
|
|
frame = frame.f_locals["frame"]
|
|
assert frame.f_code == old_code
|
|
|
|
if frame.f_locals["self"] is not self:
|
|
return
|
|
|
|
self.compiled_codes.append(new_code)
|
|
local_cache_dir = self.vllm_config.compilation_config.local_cache_dir
|
|
if isinstance(local_cache_dir, str):
|
|
decompiled_file_name = ("transformed_code.py"
|
|
if envs.VLLM_COMPILE_DEPYF else
|
|
"transformed_code_README.txt")
|
|
|
|
decompiled_file = os.path.join(local_cache_dir,
|
|
decompiled_file_name)
|
|
if not os.path.exists(decompiled_file):
|
|
try:
|
|
# usually the decompilation will succeed for most models,
|
|
# as we guarantee a full-graph compilation in Dynamo.
|
|
# but there's no 100% guarantee, since decompliation is
|
|
# not a reversible process.
|
|
if envs.VLLM_COMPILE_DEPYF:
|
|
import depyf
|
|
src = depyf.decompile(new_code)
|
|
else:
|
|
src = (
|
|
"To get a transformed_code.py file, re-run with "
|
|
"VLLM_COMPILE_DEPYF=1")
|
|
|
|
with open(decompiled_file, "w") as f:
|
|
f.write(src)
|
|
|
|
logger.debug("Dynamo transformed code saved to %s",
|
|
decompiled_file)
|
|
except Exception:
|
|
pass
|
|
|
|
if self.vllm_config.compilation_config.use_cudagraph and \
|
|
"update" in new_code.co_names:
|
|
import depyf
|
|
src = depyf.decompile(new_code)
|
|
msg = "Assigning / modifying buffers of nn.Module during forward pass is not allowed when using cudagraph inside the compiler because it will cause silent errors. Please use eager mode or fix the code. The following code contains clues about which buffer is being modified (please search for the usage of the function `update`):\n" + src # noqa
|
|
raise RuntimeError(msg)
|
|
|
|
@contextmanager
|
|
def dispatch_to_code(self, index: int):
|
|
"""Context manager to dispatch to the compiled code.
|
|
Why does this work? Because Dynamo guarantees that the compiled
|
|
bytecode has exactly the same arguments, cell variables, and free
|
|
variables as the original code. Therefore we can directly switch
|
|
the code object in the function and call it.
|
|
|
|
See https://dev-discuss.pytorch.org/t/what-is-the-relationship-requirement-among-original-bytecode-transformed-bytecode-and-bytecode-returned-by-hooks-in-dynamo/1693/7 for more details.
|
|
""" # noqa
|
|
self.__class__.forward.__code__ = self.compiled_codes[index]
|
|
yield
|
|
self.__class__.forward.__code__ = self.original_code_object
|