vllm/vllm/pooling_params.py

54 lines
2.0 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import TYPE_CHECKING, Any, Optional
import msgspec
if TYPE_CHECKING:
from vllm.config import ModelConfig
class PoolingParams(
msgspec.Struct,
omit_defaults=True, # type: ignore[call-arg]
array_like=True): # type: ignore[call-arg]
"""API parameters for pooling models. This is currently a placeholder.
Attributes:
dimensions: Reduce the dimensions of embeddings
if model support matryoshka representation.
additional_data: Any additional data needed for pooling.
"""
dimensions: Optional[int] = None
additional_data: Optional[Any] = None
def clone(self) -> "PoolingParams":
"""Returns a deep copy of the PoolingParams instance."""
return PoolingParams(dimensions=self.dimensions,
additional_data=self.additional_data)
def verify(self, model_config: "ModelConfig") -> None:
if self.dimensions is not None:
if not model_config.is_matryoshka:
raise ValueError(
f'Model "{model_config.served_model_name}" does not '
f'support matryoshka representation, '
f'changing output dimensions will lead to poor results.')
mds = model_config.matryoshka_dimensions
if mds is not None:
if self.dimensions not in mds:
raise ValueError(
f'Model "{model_config.served_model_name}" '
f'only supports {str(mds)} matryoshka dimensions, '
f'use other output dimensions will '
f'lead to poor results.')
elif self.dimensions < 1:
raise ValueError("Dimensions must be greater than 0")
def __repr__(self) -> str:
return (f"PoolingParams("
f"dimensions={self.dimensions}, "
f"additional_metadata={self.additional_data})")