mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-09 07:14:58 +08:00
276 lines
8.8 KiB
Python
276 lines
8.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
"""Test the communication operators.
|
|
|
|
Run `pytest tests/distributed/test_comm_ops.py`.
|
|
"""
|
|
|
|
from collections.abc import Callable
|
|
from typing import Any
|
|
|
|
import pytest
|
|
import ray
|
|
import torch
|
|
|
|
from vllm.distributed import (
|
|
broadcast_tensor_dict,
|
|
get_pp_group,
|
|
tensor_model_parallel_all_gather,
|
|
tensor_model_parallel_all_reduce,
|
|
tensor_model_parallel_reduce_scatter,
|
|
)
|
|
|
|
from ..utils import (
|
|
init_test_distributed_environment,
|
|
multi_gpu_test,
|
|
multi_process_parallel,
|
|
)
|
|
|
|
|
|
@ray.remote(num_gpus=1, max_calls=1)
|
|
def all_reduce_test_worker(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
tp_size: int,
|
|
pp_size: int,
|
|
rank: int,
|
|
distributed_init_port: str,
|
|
):
|
|
# it is important to delete the CUDA_VISIBLE_DEVICES environment variable
|
|
# so that each worker can see all the GPUs
|
|
# they will be able to set the device to the correct GPU
|
|
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
|
|
|
device = torch.device(f"cuda:{rank}")
|
|
torch.cuda.set_device(device)
|
|
init_test_distributed_environment(tp_size, pp_size, rank, distributed_init_port)
|
|
num_elements = 8
|
|
all_tensors = [
|
|
torch.arange(num_elements, dtype=torch.float32, device="cuda") * (r + 1)
|
|
for r in range(tp_size)
|
|
]
|
|
expected = torch.sum(torch.stack(all_tensors, dim=0), dim=0)
|
|
t = all_tensors[rank % tp_size]
|
|
t = tensor_model_parallel_all_reduce(t)
|
|
torch.testing.assert_close(t, expected)
|
|
|
|
|
|
@ray.remote(num_gpus=1, max_calls=1)
|
|
def reduce_scatter_test_worker(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
tp_size: int,
|
|
pp_size: int,
|
|
rank: int,
|
|
distributed_init_port: str,
|
|
):
|
|
# it is important to delete the CUDA_VISIBLE_DEVICES environment variable
|
|
# so that each worker can see all the GPUs
|
|
# they will be able to set the device to the correct GPU
|
|
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
|
device = torch.device(f"cuda:{rank}")
|
|
torch.cuda.set_device(device)
|
|
init_test_distributed_environment(tp_size, pp_size, rank, distributed_init_port)
|
|
|
|
num_elements = 8
|
|
all_tensors = [
|
|
torch.arange(num_elements, dtype=torch.float32, device="cuda") * (r + 1)
|
|
for r in range(tp_size)
|
|
]
|
|
|
|
index = rank % tp_size
|
|
partition_size = num_elements // tp_size
|
|
all_reduce = torch.sum(torch.stack(all_tensors, dim=0), dim=0)
|
|
expected = all_reduce[index * partition_size : (index + 1) * partition_size]
|
|
t = all_tensors[index]
|
|
t = tensor_model_parallel_reduce_scatter(t, 0)
|
|
torch.testing.assert_close(t, expected)
|
|
|
|
|
|
@ray.remote(num_gpus=1, max_calls=1)
|
|
def all_gather_test_worker(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
tp_size: int,
|
|
pp_size: int,
|
|
rank: int,
|
|
distributed_init_port: str,
|
|
):
|
|
# it is important to delete the CUDA_VISIBLE_DEVICES environment variable
|
|
# so that each worker can see all the GPUs
|
|
# they will be able to set the device to the correct GPU
|
|
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
|
device = torch.device(f"cuda:{rank}")
|
|
torch.cuda.set_device(device)
|
|
init_test_distributed_environment(tp_size, pp_size, rank, distributed_init_port)
|
|
num_dimensions = 3
|
|
tensor_size = list(range(2, num_dimensions + 2))
|
|
total_size = 1
|
|
for s in tensor_size:
|
|
total_size *= s
|
|
for all_gather_dimension in range(num_dimensions):
|
|
all_tensors = [
|
|
torch.arange(total_size, dtype=torch.float32, device="cuda").reshape(
|
|
tensor_size
|
|
)
|
|
* (r + 1)
|
|
for r in range(tp_size)
|
|
]
|
|
expected = torch.cat(all_tensors, dim=all_gather_dimension)
|
|
t = all_tensors[rank % tp_size]
|
|
t = tensor_model_parallel_all_gather(t, all_gather_dimension)
|
|
torch.testing.assert_close(t, expected)
|
|
|
|
|
|
@ray.remote(num_gpus=1, max_calls=1)
|
|
def broadcast_tensor_dict_test_worker(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
tp_size: int,
|
|
pp_size: int,
|
|
rank: int,
|
|
distributed_init_port: str,
|
|
):
|
|
# it is important to delete the CUDA_VISIBLE_DEVICES environment variable
|
|
# so that each worker can see all the GPUs
|
|
# they will be able to set the device to the correct GPU
|
|
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
|
device = torch.device(f"cuda:{rank}")
|
|
torch.cuda.set_device(device)
|
|
init_test_distributed_environment(tp_size, pp_size, rank, distributed_init_port)
|
|
test_dict = {
|
|
# device tensor
|
|
"a": torch.arange(8, dtype=torch.float32, device="cuda"),
|
|
# CPU tensor
|
|
"b": torch.arange(16, dtype=torch.int8, device="cpu"),
|
|
"c": "test",
|
|
"d": [1, 2, 3],
|
|
"e": {"a": 1, "b": 2},
|
|
# empty tensor
|
|
"f": torch.tensor([], dtype=torch.float32, device="cuda"),
|
|
}
|
|
|
|
if (rank % tp_size) == 0:
|
|
broadcast_tensor_dict(test_dict, src=0)
|
|
else:
|
|
recv_dict = broadcast_tensor_dict(src=0)
|
|
assert len(recv_dict) == len(test_dict)
|
|
torch.testing.assert_close(recv_dict["a"], test_dict["a"])
|
|
torch.testing.assert_close(recv_dict["b"], test_dict["b"])
|
|
assert recv_dict["c"] == test_dict["c"]
|
|
assert recv_dict["d"] == test_dict["d"]
|
|
assert recv_dict["e"] == test_dict["e"]
|
|
torch.testing.assert_close(recv_dict["f"], test_dict["f"])
|
|
|
|
|
|
@ray.remote(num_gpus=1, max_calls=1)
|
|
def send_recv_tensor_dict_test_worker(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
tp_size: int,
|
|
pp_size: int,
|
|
rank: int,
|
|
distributed_init_port: str,
|
|
):
|
|
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
|
device = torch.device(f"cuda:{rank}")
|
|
torch.cuda.set_device(device)
|
|
init_test_distributed_environment(tp_size, pp_size, rank, distributed_init_port)
|
|
|
|
test_dict = {
|
|
# device tensor
|
|
"a": torch.arange(8, dtype=torch.float32, device="cuda"),
|
|
# CPU tensor
|
|
"b": torch.arange(16, dtype=torch.int8, device="cpu"),
|
|
"c": "test",
|
|
"d": [1, 2, 3],
|
|
"e": {"a": 1, "b": 2},
|
|
# empty tensor
|
|
"f": torch.tensor([], dtype=torch.float32, device="cuda"),
|
|
}
|
|
|
|
if not get_pp_group().is_first_rank:
|
|
recv_dict = get_pp_group().recv_tensor_dict()
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
get_pp_group().send_tensor_dict(test_dict)
|
|
|
|
if not get_pp_group().is_first_rank:
|
|
assert len(recv_dict) == len(test_dict)
|
|
torch.testing.assert_close(recv_dict["a"], test_dict["a"])
|
|
torch.testing.assert_close(recv_dict["b"], test_dict["b"])
|
|
assert recv_dict["c"] == test_dict["c"]
|
|
assert recv_dict["d"] == test_dict["d"]
|
|
assert recv_dict["e"] == test_dict["e"]
|
|
torch.testing.assert_close(recv_dict["f"], test_dict["f"])
|
|
|
|
|
|
@ray.remote(num_gpus=1, max_calls=1)
|
|
def send_recv_test_worker(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
tp_size: int,
|
|
pp_size: int,
|
|
rank: int,
|
|
distributed_init_port: str,
|
|
):
|
|
monkeypatch.delenv("CUDA_VISIBLE_DEVICES", raising=False)
|
|
device = torch.device(f"cuda:{rank}")
|
|
torch.cuda.set_device(device)
|
|
init_test_distributed_environment(tp_size, pp_size, rank, distributed_init_port)
|
|
|
|
size = 64
|
|
test_tensor = torch.arange(64, dtype=torch.float32, device="cuda")
|
|
|
|
if not get_pp_group().is_first_rank:
|
|
recv_tensor = get_pp_group().recv(size, dtype=torch.float32)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
get_pp_group().send(test_tensor)
|
|
|
|
if not get_pp_group().is_first_rank:
|
|
torch.testing.assert_close(test_tensor, recv_tensor)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=2)
|
|
@pytest.mark.parametrize("tp_size", [2])
|
|
@pytest.mark.parametrize(
|
|
"test_target",
|
|
[all_reduce_test_worker, all_gather_test_worker, broadcast_tensor_dict_test_worker],
|
|
)
|
|
def test_multi_process_tensor_parallel(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
tp_size: int,
|
|
test_target: Callable[..., Any],
|
|
):
|
|
multi_process_parallel(monkeypatch, tp_size, 1, test_target)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=2)
|
|
@pytest.mark.parametrize("pp_size", [2])
|
|
@pytest.mark.parametrize(
|
|
"test_target", [send_recv_test_worker, send_recv_tensor_dict_test_worker]
|
|
)
|
|
def test_multi_process_pipeline_parallel(
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
pp_size: int,
|
|
test_target: Callable[..., Any],
|
|
):
|
|
multi_process_parallel(monkeypatch, 1, pp_size, test_target)
|
|
|
|
|
|
@multi_gpu_test(num_gpus=4)
|
|
@pytest.mark.parametrize("tp_size", [2])
|
|
@pytest.mark.parametrize("pp_size", [2])
|
|
@pytest.mark.parametrize(
|
|
"test_target",
|
|
[
|
|
send_recv_test_worker,
|
|
send_recv_tensor_dict_test_worker,
|
|
all_reduce_test_worker,
|
|
all_gather_test_worker,
|
|
broadcast_tensor_dict_test_worker,
|
|
],
|
|
)
|
|
def test_multi_process_tensor_parallel_pipeline_parallel(
|
|
tp_size: int,
|
|
pp_size: int,
|
|
test_target: Callable[..., Any],
|
|
monkeypatch: pytest.MonkeyPatch,
|
|
):
|
|
multi_process_parallel(monkeypatch, tp_size, pp_size, test_target)
|