Jee Jee Li 39e63dec7c
[LoRA] Cleanup LoRA unused code (#29611)
Signed-off-by: Jee Jee Li <pandaleefree@gmail.com>
Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
2025-11-28 22:52:58 -08:00

747 lines
26 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from collections.abc import Iterable
from itertools import islice
import torch
import torch.nn as nn
from vllm.attention.layer import Attention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ModelConfig, VllmConfig, get_current_vllm_config
from vllm.distributed import (
get_ep_group,
get_pp_group,
get_tensor_model_parallel_world_size,
)
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.fused_moe import FusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mamba.mamba_utils import (
MambaStateDtypeCalculator,
MambaStateShapeCalculator,
)
from vllm.model_executor.layers.mamba.short_conv import ShortConv
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs import Lfm2MoeConfig
from .interfaces import (
HasInnerState,
IsHybrid,
MixtureOfExperts,
SupportsLoRA,
SupportsPP,
SupportsQuant,
)
from .utils import (
AutoWeightsLoader,
PPMissingLayer,
extract_layer_index,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
class Lfm2MoeMlp(nn.Module):
def __init__(
self,
dim: int,
ff_dim: int,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.w1 = MergedColumnParallelLinear(
input_size=dim,
output_sizes=[ff_dim] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.w1",
)
self.w2 = RowParallelLinear(
input_size=ff_dim,
output_size=dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.w2",
)
self.act_fn = SiluAndMul()
def forward(self, x: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.w1(x)
x = self.act_fn(gate_up)
x, _ = self.w2(x)
return x
class Lfm2MoeSparseMoeBlock(nn.Module):
def __init__(
self,
config: Lfm2MoeConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
enable_eplb: bool = False,
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.routed_scaling_factor = config.routed_scaling_factor
self.ep_group = get_ep_group().device_group
self.ep_rank = get_ep_group().rank_in_group
self.ep_size = self.ep_group.size()
self.n_routed_experts = config.num_experts
if self.tp_size > self.n_routed_experts:
raise ValueError(
f"Tensor parallel size {self.tp_size} is greater than "
f"the number of experts {self.n_routed_experts}."
)
# Load balancing settings.
vllm_config = get_current_vllm_config()
eplb_config = vllm_config.parallel_config.eplb_config
self.enable_eplb = enable_eplb
self.n_logical_experts = self.n_routed_experts
self.n_redundant_experts = eplb_config.num_redundant_experts
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
self.physical_expert_end = (
self.physical_expert_start + self.n_local_physical_experts
)
self.gate = ReplicatedLinear(
config.hidden_size,
config.num_experts,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate",
)
if config.use_expert_bias:
self.gate.e_score_correction_bias = nn.Parameter(
torch.empty(self.n_routed_experts, dtype=torch.float32)
)
else:
self.gate.e_score_correction_bias = None
self.experts = FusedMoE(
num_experts=self.n_routed_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
use_grouped_topk=True, # needed for softmax score func
num_expert_group=1,
topk_group=1,
prefix=f"{prefix}.experts",
enable_eplb=self.enable_eplb,
num_redundant_experts=self.n_redundant_experts,
scoring_func="sigmoid",
e_score_correction_bias=self.gate.e_score_correction_bias,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
orig_shape = hidden_states.shape
hidden_dim = hidden_states.shape[-1]
hidden_states = hidden_states.view(-1, hidden_dim)
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
final_hidden_states = (
self.experts(hidden_states=hidden_states, router_logits=router_logits)
* self.routed_scaling_factor
)
if self.tp_size > 1:
final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel( # noqa E501
final_hidden_states
)
return final_hidden_states.view(orig_shape)
class Lfm2MoeAttention(nn.Module):
def __init__(
self,
config: Lfm2MoeConfig,
layer_idx: int,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position_embeddings: int = 8192,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.hidden_size = hidden_size
self.num_kv_heads = num_kv_heads
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = self.hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size=self.hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.out_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.out_proj",
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=self.max_position_embeddings,
rope_parameters=config.rope_parameters,
is_neox_style=True,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
prefix=f"{prefix}.attn",
)
self.q_layernorm = RMSNorm(self.head_dim, eps=config.norm_eps)
self.k_layernorm = RMSNorm(self.head_dim, eps=config.norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
n_tokens, _ = hidden_states.shape
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q = q.view(n_tokens, self.num_heads, self.head_dim).contiguous()
k = k.view(n_tokens, self.num_kv_heads, self.head_dim).contiguous()
q = self.q_layernorm(q)
k = self.k_layernorm(k)
q, k = self.rotary_emb(positions, q, k)
q = q.view(n_tokens, self.num_heads * self.head_dim)
k = k.view(n_tokens, self.num_kv_heads * self.head_dim)
attn_output = self.attn(q, k, v)
output, _ = self.out_proj(attn_output)
return output
class Lfm2MoeAttentionDecoderLayer(nn.Module):
def __init__(
self,
config: Lfm2MoeConfig,
layer_idx: int,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
enable_eplb: bool = False,
) -> None:
super().__init__()
self.prefix = prefix
self.config = config
self.layer_idx = layer_idx
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
self.self_attn = Lfm2MoeAttention(
config=config,
layer_idx=layer_idx,
hidden_size=config.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
if layer_idx < config.num_dense_layers:
self.feed_forward = Lfm2MoeMlp(
dim=config.hidden_size,
ff_dim=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
else:
self.feed_forward = Lfm2MoeSparseMoeBlock(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
enable_eplb=enable_eplb,
)
self.operator_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
if residual is None:
residual = hidden_states
hidden_states = self.operator_norm(hidden_states)
else:
hidden_states, residual = self.operator_norm(hidden_states, residual)
hidden_states = self.self_attn(positions=positions, hidden_states=hidden_states)
hidden_states, residual = self.ffn_norm(hidden_states, residual)
return self.feed_forward(hidden_states), residual
class Lfm2MoeShortConvDecoderLayer(nn.Module):
def __init__(
self,
config: Lfm2MoeConfig,
layer_idx: int,
model_config: ModelConfig | None = None,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
enable_eplb: bool = False,
) -> None:
super().__init__()
self.layer_idx = layer_idx
self.conv = ShortConv(
config=config,
dim=config.hidden_size,
layer_idx=layer_idx,
model_config=model_config,
cache_config=cache_config,
prefix=f"{prefix}.conv",
)
if layer_idx < config.num_dense_layers:
self.feed_forward = Lfm2MoeMlp(
dim=config.hidden_size,
ff_dim=config.intermediate_size,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
else:
self.feed_forward = Lfm2MoeSparseMoeBlock(
config=config,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
enable_eplb=enable_eplb,
)
self.operator_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
**kwargs,
):
if residual is None:
residual = hidden_states
hidden_states = self.operator_norm(hidden_states)
else:
hidden_states, residual = self.operator_norm(hidden_states, residual)
output = torch.empty_like(hidden_states)
self.conv(
hidden_states,
output,
)
hidden_states, residual = self.ffn_norm(output, residual)
hidden_states = self.feed_forward(hidden_states)
return hidden_states, residual
@support_torch_compile
class Lfm2MoeModel(nn.Module):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
parallel_config = vllm_config.parallel_config
enable_eplb = parallel_config.enable_eplb
eplb_config = parallel_config.eplb_config
self.num_redundant_experts = eplb_config.num_redundant_experts
self.config = config
self.vocab_size = config.vocab_size
self.embed_tokens = VocabParallelEmbedding(
self.vocab_size, config.hidden_size, org_num_embeddings=config.vocab_size
)
def get_layer(prefix: str):
layer_idx = extract_layer_index(prefix)
is_attn = self.config.layer_types[layer_idx] == "full_attention"
layer_class = (
Lfm2MoeAttentionDecoderLayer
if is_attn
else Lfm2MoeShortConvDecoderLayer
)
return layer_class(
config,
layer_idx,
model_config,
cache_config,
quant_config=quant_config,
prefix=prefix,
enable_eplb=enable_eplb,
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers, get_layer, prefix=f"{prefix}.layers"
)
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
if get_pp_group().is_last_rank:
self.embedding_norm = RMSNorm(config.hidden_size, eps=config.norm_eps)
else:
self.embedding_norm = PPMissingLayer()
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_input_ids(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states, residual = layer(
positions=positions,
hidden_states=hidden_states,
residual=residual,
)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.embedding_norm(hidden_states, residual)
return hidden_states
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return FusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="w1",
ckpt_down_proj_name="w2",
ckpt_up_proj_name="w3",
num_experts=self.config.num_experts,
num_redundant_experts=self.num_redundant_experts,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".w1", ".w1", 0),
(".w1", ".w3", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
expert_params_mapping = self.get_expert_mapping()
for name, loaded_weight in weights:
if "expert_bias" in name:
name = name.replace("expert_bias", "gate.e_score_correction_bias")
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
if ("feed_forward.experts." in name) and name not in params_dict:
continue
name = name.replace(weight_name, param_name)
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in name:
continue
name = name.replace(weight_name, param_name)
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(
param,
loaded_weight,
name,
shard_id=shard_id,
expert_id=expert_id,
)
break
else:
# Skip loading extra bias for GPTQ models.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
# Skip layers on other devices.
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Lfm2MoeForCausalLM(
nn.Module,
HasInnerState,
SupportsLoRA,
SupportsPP,
IsHybrid,
SupportsQuant,
MixtureOfExperts,
):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"w1": [
"w1",
"w3",
],
}
# LoRA specific attributes
embedding_modules = {
"embed_tokens": "input_embeddings",
"lm_head": "output_embeddings",
}
@classmethod
def get_mamba_state_dtype_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[torch.dtype, ...]:
return MambaStateDtypeCalculator.short_conv_state_dtype(
vllm_config.model_config.dtype,
vllm_config.cache_config.mamba_cache_dtype,
)
@classmethod
def get_mamba_state_shape_from_config(
cls,
vllm_config: "VllmConfig",
) -> tuple[tuple[int, int]]:
"""Calculate shapes for LFM2's convolutional cache.
Args:
vllm_config: vLLM config
Returns:
Tuple containing:
- conv_state_shape: Shape for convolutional state cache
"""
parallel_config = vllm_config.parallel_config
hf_config = vllm_config.model_config.hf_config
return MambaStateShapeCalculator.short_conv_state_shape(
tp_world_size=parallel_config.tensor_parallel_size,
intermediate_size=hf_config.hidden_size,
conv_kernel=hf_config.conv_L_cache,
)
def __init__(self, *, vllm_config: VllmConfig, prefix: str = "") -> None:
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
cache_config = vllm_config.cache_config
assert not cache_config.enable_prefix_caching, (
"Lfm2Moe currently does not support prefix caching"
)
super().__init__()
self.config = config
self.model = Lfm2MoeModel(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
self.lm_head = self.lm_head.tie_weights(self.model.embed_tokens)
else:
self.lm_head = PPMissingLayer()
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
# Set MoE hyperparameters
self.expert_weights = []
self.moe_layers = []
example_layer = None
for layer in self.model.layers:
if isinstance(layer, PPMissingLayer):
continue
assert isinstance(
layer, (Lfm2MoeAttentionDecoderLayer, Lfm2MoeShortConvDecoderLayer)
)
if isinstance(layer.feed_forward, Lfm2MoeSparseMoeBlock):
example_layer = layer.feed_forward
self.moe_layers.append(layer.feed_forward.experts)
if example_layer is None:
raise RuntimeError(
"No Lfm2MoeSparseMoeBlock layer found in the model.layers."
)
self.num_moe_layers = len(self.moe_layers)
self.num_expert_groups = 1
self.num_shared_experts = 0
self.num_logical_experts = example_layer.n_logical_experts
self.num_physical_experts = example_layer.n_physical_experts
self.num_local_physical_experts = example_layer.n_local_physical_experts
self.num_routed_experts = example_layer.n_routed_experts
self.num_redundant_experts = example_layer.n_redundant_experts
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.embed_input_ids(input_ids)
def update_physical_experts_metadata(
self,
num_physical_experts: int,
num_local_physical_experts: int,
) -> None:
assert self.num_local_physical_experts == num_local_physical_experts
self.num_physical_experts = num_physical_experts
self.num_local_physical_experts = num_local_physical_experts
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
for layer in self.model.layers:
if isinstance(layer.feed_forward, Lfm2MoeSparseMoeBlock):
moe = layer.feed_forward
moe.n_local_physical_experts = num_local_physical_experts
moe.n_physical_experts = num_physical_experts
moe.n_redundant_experts = self.num_redundant_experts
moe.experts.update_expert_map()
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor:
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
)
return loader.load_weights(weights)
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
return self.model.get_expert_mapping()