vllm/vllm/model_executor/models/deepseek_v2.py
Harry Mellor 97d1c99302
Rename clashing method names for vLLM model protocol (#27583)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-11-12 19:14:33 -08:00

1650 lines
61 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from
# https://github.com/huggingface/transformers/blob/v4.28.0/src/transformers/models/llama/modeling_llama.py
# Copyright 2023 The vLLM team.
# Copyright 2023 DeepSeek-AI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only DeepseekV2/DeepseekV3 model."""
import typing
from collections.abc import Callable, Iterable
from itertools import islice
from typing import Any
import torch
from torch import nn
from transformers import DeepseekV2Config, DeepseekV3Config
from vllm._aiter_ops import rocm_aiter_ops
from vllm.attention import Attention
from vllm.attention.backends.abstract import AttentionBackend
from vllm.attention.ops.common import pack_seq_triton, unpack_seq_triton
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, ParallelConfig, VllmConfig, get_current_vllm_config
from vllm.distributed import (
get_ep_group,
get_pp_group,
get_tensor_model_parallel_rank,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_gather,
)
from vllm.forward_context import get_forward_context
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import SiluAndMul
from vllm.model_executor.layers.attention_layer_base import AttentionLayerBase
from vllm.model_executor.layers.fused_moe import SharedFusedMoE
from vllm.model_executor.layers.layernorm import LayerNorm, RMSNorm
from vllm.model_executor.layers.linear import (
ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.mla import MLAModules, MultiHeadLatentAttentionWrapper
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.quantization.utils.fp8_utils import (
per_token_group_quant_fp8,
)
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
ParallelLMHead,
VocabParallelEmbedding,
)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.model_executor.models.utils import sequence_parallel_chunk
from vllm.platforms import current_platform
from vllm.sequence import IntermediateTensors
from vllm.utils.deep_gemm import fp8_mqa_logits, fp8_paged_mqa_logits
from vllm.utils.torch_utils import direct_register_custom_op
from vllm.v1.attention.backends.mla.indexer import (
DeepseekV32IndexerBackend,
DeepseekV32IndexerMetadata,
)
from vllm.v1.kv_cache_interface import KVCacheSpec, MLAAttentionSpec
from .interfaces import MixtureOfExperts, SupportsLoRA, SupportsPP
from .utils import (
PPMissingLayer,
is_pp_missing_parameter,
make_empty_intermediate_tensors_factory,
make_layers,
maybe_prefix,
)
if current_platform.is_cuda_alike():
from vllm import _custom_ops as ops
elif current_platform.is_xpu():
from vllm._ipex_ops import ipex_ops as ops
logger = init_logger(__name__)
class DeepseekAttention(nn.Module):
"""Normal MHA implementation used by Deepseek v1."""
def __init__(
self,
vllm_config: VllmConfig,
config: DeepseekV2Config | DeepseekV3Config,
hidden_size: int,
num_heads: int,
rope_theta: float = 10000,
rope_scaling: dict[str, Any] | None = None,
max_position_embeddings: int = 8192,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
**kwargs,
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = config.num_key_value_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = hidden_size // self.total_num_heads
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
)
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class DeepseekV2MLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_act: str,
quant_config: QuantizationConfig | None = None,
reduce_results: bool = True,
is_sequence_parallel=False,
prefix: str = "",
) -> None:
super().__init__()
# If is_sequence_parallel, the input and output tensors are sharded
# across the ranks within the tp_group. In this case the weights are
# replicated and no collective ops are needed.
# Otherwise we use standard TP with an allreduce at the end.
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
disable_tp=is_sequence_parallel,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
reduce_results=reduce_results,
disable_tp=is_sequence_parallel,
prefix=f"{prefix}.down_proj",
)
if hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {hidden_act}. Only silu is supported for now."
)
self.act_fn = SiluAndMul()
def forward(self, x):
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class DeepseekV2MoE(nn.Module):
def __init__(
self,
config: DeepseekV2Config | DeepseekV3Config,
parallel_config: ParallelConfig,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
):
super().__init__()
self.tp_size = get_tensor_model_parallel_world_size()
self.tp_rank = get_tensor_model_parallel_rank()
self.routed_scaling_factor = getattr(config, "routed_scaling_factor", 1.0)
self.ep_group = get_ep_group().device_group
self.ep_rank = get_ep_group().rank_in_group
self.ep_size = self.ep_group.size()
self.n_routed_experts: int = config.n_routed_experts
self.n_shared_experts: int = config.n_shared_experts
self.is_sequence_parallel = parallel_config.use_sequence_parallel_moe
if config.hidden_act != "silu":
raise ValueError(
f"Unsupported activation: {config.hidden_act}. "
"Only silu is supported for now."
)
self.gate = ReplicatedLinear(
config.hidden_size,
config.n_routed_experts,
bias=False,
quant_config=None,
prefix=f"{prefix}.gate",
)
if getattr(config, "topk_method", None) == "noaux_tc":
self.gate.e_score_correction_bias = nn.Parameter(
torch.empty(config.n_routed_experts, dtype=torch.float32)
)
else:
self.gate.e_score_correction_bias = None
# Load balancing settings.
eplb_config = parallel_config.eplb_config
self.enable_eplb = parallel_config.enable_eplb
self.n_redundant_experts = eplb_config.num_redundant_experts
self.n_logical_experts = self.n_routed_experts
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
self.physical_expert_end = (
self.physical_expert_start + self.n_local_physical_experts
)
self.is_rocm_aiter_moe_enabled = rocm_aiter_ops.is_fused_moe_enabled()
if config.n_shared_experts is None or self.is_rocm_aiter_moe_enabled:
self.shared_experts = None
else:
intermediate_size = config.moe_intermediate_size * config.n_shared_experts
self.shared_experts = DeepseekV2MLP(
hidden_size=config.hidden_size,
intermediate_size=intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
is_sequence_parallel=self.is_sequence_parallel,
reduce_results=False,
prefix=f"{prefix}.shared_experts",
)
self.experts = SharedFusedMoE(
shared_experts=self.shared_experts,
gate=self.gate,
num_experts=config.n_routed_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
intermediate_size=config.moe_intermediate_size,
reduce_results=False,
renormalize=config.norm_topk_prob,
quant_config=quant_config,
use_grouped_topk=True,
num_expert_group=getattr(config, "n_group", 1),
topk_group=getattr(config, "topk_group", 1),
prefix=f"{prefix}.experts",
scoring_func=getattr(config, "scoring_func", "softmax"),
# we do scaling outside, set factor to 1.0 to avoid double mul
# aiter applies routed_scaling_factor internally
routed_scaling_factor=1.0
if not self.is_rocm_aiter_moe_enabled
else self.routed_scaling_factor,
e_score_correction_bias=self.gate.e_score_correction_bias,
enable_eplb=self.enable_eplb,
num_redundant_experts=self.n_redundant_experts,
is_sequence_parallel=self.is_sequence_parallel,
n_shared_experts=config.n_shared_experts
if rocm_aiter_ops.is_fusion_moe_shared_experts_enabled()
else None,
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
num_tokens, hidden_dim = hidden_states.shape
hidden_states = hidden_states.view(-1, hidden_dim)
# Chunk the hidden states so they aren't replicated across TP ranks.
# This avoids duplicate computation in self.experts.
# TODO: We can replace the all_reduce at the end of attn with a
# reduce_scatter instead of chunking here.
if self.is_sequence_parallel:
hidden_states = sequence_parallel_chunk(hidden_states)
if self.experts.is_internal_router:
# In this case, the gate/router runs inside the FusedMoE class
fused_moe_out = self.experts(
hidden_states=hidden_states, router_logits=hidden_states
)
else:
# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)
fused_moe_out = self.experts(
hidden_states=hidden_states, router_logits=router_logits
)
shared_output, final_hidden_states = fused_moe_out
if self.shared_experts is None:
assert shared_output is None
# Fix FP16 overflow
# See DeepseekV2DecoderLayer for more details.
if hidden_states.dtype != torch.float16:
if not self.is_rocm_aiter_moe_enabled:
final_hidden_states *= self.routed_scaling_factor
elif self.shared_experts is not None:
assert shared_output is not None
shared_output *= 1.0 / self.routed_scaling_factor
if self.shared_experts is not None:
assert shared_output is not None
final_hidden_states += shared_output
if self.is_sequence_parallel:
final_hidden_states = tensor_model_parallel_all_gather(
final_hidden_states, 0
)
final_hidden_states = final_hidden_states[:num_tokens]
elif self.tp_size > 1:
final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel(
final_hidden_states
)
return final_hidden_states.view(num_tokens, hidden_dim)
def yarn_get_mscale(scale: float = 1, mscale: float = 1) -> float:
import math
if scale <= 1:
return 1.0
return 0.1 * mscale * math.log(scale) + 1.0
class DeepseekV2Attention(nn.Module):
def __init__(
self,
vllm_config: VllmConfig,
config: DeepseekV2Config | DeepseekV3Config,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: int,
kv_lora_rank: int,
rope_theta: float = 10000,
rope_scaling: dict[str, Any] | None = None,
max_position_embeddings: int = 8192,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
topk_indices_buffer: torch.Tensor | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
tp_size = get_tensor_model_parallel_world_size()
assert num_heads % tp_size == 0
self.num_local_heads = num_heads // tp_size
self.scaling = self.qk_head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
assert topk_indices_buffer is None, (
"topk_indices_buffer is not \
supported for DeepseekV2Attention"
)
if self.q_lora_rank is not None:
self.q_a_proj = ReplicatedLinear(
self.hidden_size,
self.q_lora_rank,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_a_proj",
)
self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
self.q_b_proj = ColumnParallelLinear(
q_lora_rank,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_b_proj",
)
else:
self.q_proj = ColumnParallelLinear(
self.hidden_size,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_proj",
)
self.kv_a_proj_with_mqa = ReplicatedLinear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_a_proj_with_mqa",
)
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
self.kv_b_proj = ColumnParallelLinear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_b_proj",
)
# O projection.
self.o_proj = RowParallelLinear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
if rope_scaling:
rope_scaling["rope_type"] = "deepseek_yarn"
self.rotary_emb = get_rope(
qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=False,
)
if rope_scaling:
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
scaling_factor = rope_scaling["factor"]
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale
self.attn = Attention(
self.num_local_heads,
self.qk_head_dim,
self.scaling,
num_kv_heads=self.num_local_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
if self.q_lora_rank is not None:
q = self.q_a_proj(hidden_states)[0]
q = self.q_a_layernorm(q)
q = self.q_b_proj(q)[0].view(-1, self.num_local_heads, self.qk_head_dim)
else:
q = self.q_proj(hidden_states)[0].view(
-1, self.num_local_heads, self.qk_head_dim
)
q_nope, q_pe = q.split([self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
latent_cache = self.kv_a_proj_with_mqa(hidden_states)[0]
kv_a, _ = latent_cache.split([self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
latent_cache = latent_cache.unsqueeze(1)
kv_a = self.kv_a_layernorm(kv_a)
kv = self.kv_b_proj(kv_a)[0]
kv = kv.view(-1, self.num_local_heads, self.qk_nope_head_dim + self.v_head_dim)
k_nope, v = kv.split([self.qk_nope_head_dim, self.v_head_dim], dim=-1)
k_pe = latent_cache[:, :, self.kv_lora_rank :]
q_pe, k_pe = self.rotary_emb(positions, q_pe, k_pe)
q[..., self.qk_nope_head_dim :] = q_pe
k = torch.empty_like(q)
k[..., : self.qk_nope_head_dim] = k_nope
k[..., self.qk_nope_head_dim :] = k_pe
# padding value to qk_head_dim for alignment
v = torch.nn.functional.pad(
v, [0, self.qk_head_dim - self.v_head_dim], value=0
).view(-1, self.num_local_heads * self.qk_head_dim)
attn_output = self.attn(q, k, v)
attn_output = attn_output.view(-1, self.num_local_heads, self.qk_head_dim)[
..., : self.v_head_dim
].reshape(-1, self.num_local_heads * self.v_head_dim)
output, _ = self.o_proj(attn_output)
return output
class DeepseekV32IndexerCache(torch.nn.Module, AttentionLayerBase):
def __init__(
self, head_dim: int, dtype: torch.dtype, prefix: str, cache_config: CacheConfig
):
super().__init__()
self.kv_cache = [torch.tensor([])]
self.head_dim = head_dim
self.prefix = prefix
self.cache_config = cache_config
self.dtype = dtype
compilation_config = get_current_vllm_config().compilation_config
if prefix in compilation_config.static_forward_context:
raise ValueError(f"Duplicate layer name: {prefix}")
compilation_config.static_forward_context[prefix] = self
def get_kv_cache_spec(self, vllm_config: VllmConfig) -> KVCacheSpec:
return MLAAttentionSpec( # Only has one vector instead of K + V
block_size=self.cache_config.block_size,
num_kv_heads=1,
head_size=self.head_dim,
dtype=self.dtype,
)
def forward(self): ...
def get_attn_backend(self) -> AttentionBackend:
return DeepseekV32IndexerBackend
def sparse_attn_indexer(
hidden_states: torch.Tensor,
k_cache_prefix: str,
kv_cache: torch.Tensor,
q_fp8: torch.Tensor,
k: torch.Tensor,
weights: torch.Tensor,
quant_block_size: int,
scale_fmt: str | None,
topk_tokens: int,
head_dim: int,
max_model_len: int,
total_seq_lens: int,
topk_indices_buffer: torch.Tensor | None,
) -> torch.Tensor:
# careful! this will be None in dummy run
attn_metadata = get_forward_context().attn_metadata
# assert isinstance(attn_metadata, dict)
if not isinstance(attn_metadata, dict):
return sparse_attn_indexer_fake(
hidden_states,
k_cache_prefix,
kv_cache,
q_fp8,
k,
weights,
quant_block_size,
scale_fmt,
topk_tokens,
head_dim,
max_model_len,
total_seq_lens,
topk_indices_buffer,
)
attn_metadata = attn_metadata[k_cache_prefix]
assert isinstance(attn_metadata, DeepseekV32IndexerMetadata)
slot_mapping = attn_metadata.slot_mapping
has_decode = attn_metadata.num_decodes > 0
has_prefill = attn_metadata.num_prefills > 0
num_decode_tokens = attn_metadata.num_decode_tokens
ops.indexer_k_quant_and_cache(
k,
kv_cache,
slot_mapping,
quant_block_size,
scale_fmt,
)
topk_indices_buffer[: hidden_states.shape[0]] = -1
if has_prefill:
prefill_metadata = attn_metadata.prefill
for chunk in prefill_metadata.chunks:
k_fp8 = torch.empty(
[chunk.total_seq_lens, head_dim],
device=k.device,
dtype=torch.float8_e4m3fn,
)
k_scale = torch.empty(
[chunk.total_seq_lens, 4],
device=k.device,
dtype=torch.uint8,
)
ops.cp_gather_indexer_k_quant_cache(
kv_cache,
k_fp8,
k_scale,
chunk.block_table,
chunk.cu_seq_lens,
)
logits = fp8_mqa_logits(
q_fp8[chunk.token_start : chunk.token_end],
(k_fp8, k_scale.view(torch.float32)),
weights[chunk.token_start : chunk.token_end],
chunk.cu_seqlen_ks,
chunk.cu_seqlen_ke,
)
num_rows = logits.shape[0]
assert topk_tokens == 2048, "top_k_per_row assumes size 2048"
topk_indices = topk_indices_buffer[
chunk.token_start : chunk.token_end, :topk_tokens
]
torch.ops._C.top_k_per_row(
logits,
chunk.cu_seqlen_ks,
chunk.cu_seqlen_ke,
topk_indices,
num_rows,
logits.stride(0),
logits.stride(1),
)
if has_decode:
decode_metadata = attn_metadata.decode
# kv_cache size requirement [num_block, block_size, n_head, head_dim],
# we only have [num_block, block_size, head_dim],
kv_cache = kv_cache.unsqueeze(-2)
decode_lens = decode_metadata.decode_lens
if decode_metadata.requires_padding:
# pad in edge case where we have short chunked prefill length <
# decode_threshold since we unstrictly split
# prefill and decode by decode_threshold
# (currently set to 1 + speculative tokens)
padded_q_fp8_decode_tokens = pack_seq_triton(
q_fp8[:num_decode_tokens], decode_lens
)
else:
padded_q_fp8_decode_tokens = q_fp8[:num_decode_tokens].reshape(
decode_lens.shape[0], -1, *q_fp8.shape[1:]
)
# TODO: move and optimize below logic with triton kernels
batch_size = padded_q_fp8_decode_tokens.shape[0]
next_n = padded_q_fp8_decode_tokens.shape[1]
assert batch_size == decode_metadata.seq_lens.shape[0]
num_padded_tokens = batch_size * next_n
logits = fp8_paged_mqa_logits(
padded_q_fp8_decode_tokens,
kv_cache,
weights[:num_padded_tokens],
decode_metadata.seq_lens,
decode_metadata.block_table,
decode_metadata.schedule_metadata,
max_model_len=max_model_len,
)
num_rows = logits.shape[0]
assert topk_tokens == 2048, "top_k_per_row assumes size 2048"
topk_indices = topk_indices_buffer[:num_decode_tokens, :topk_tokens]
torch.ops._C.top_k_per_row_decode(
logits,
next_n,
decode_metadata.seq_lens,
topk_indices,
num_rows,
logits.stride(0),
logits.stride(1),
)
if decode_metadata.requires_padding:
# if padded, we need to unpack
# the topk indices removing padded tokens
topk_indices = unpack_seq_triton(
topk_indices.reshape(batch_size, -1, topk_indices.shape[-1]),
decode_lens,
)
topk_indices_buffer[:num_decode_tokens, : topk_indices.shape[-1]] = (
topk_indices
)
return topk_indices_buffer
def sparse_attn_indexer_fake(
hidden_states: torch.Tensor,
k_cache_prefix: str,
kv_cache: torch.Tensor,
q_fp8: torch.Tensor,
k: torch.Tensor,
weights: torch.Tensor,
quant_block_size: int,
scale_fmt: str | None,
topk_tokens: int,
head_dim: int,
max_model_len: int,
total_seq_lens: int,
topk_indices_buffer: torch.Tensor | None,
) -> torch.Tensor:
# profile run
# NOTE(Chen): create the max possible flattened_kv. So that
# profile_run can get correct memory usage.
_flattened_kv = torch.empty(
[total_seq_lens, head_dim + 4], device=k.device, dtype=torch.uint8
)
_k_fp8 = _flattened_kv[..., :head_dim].view(torch.float8_e4m3fn).contiguous()
_k_scale = _flattened_kv[..., head_dim:].view(torch.float32).contiguous()
return topk_indices_buffer
direct_register_custom_op(
op_name="sparse_attn_indexer",
op_func=sparse_attn_indexer,
mutates_args=["topk_indices_buffer"],
fake_impl=sparse_attn_indexer_fake,
dispatch_key=current_platform.dispatch_key,
)
class Indexer(nn.Module):
def __init__(
self,
vllm_config: VllmConfig,
config: DeepseekV2Config | DeepseekV3Config,
hidden_size: int,
q_lora_rank: int,
quant_config: QuantizationConfig | None,
cache_config: CacheConfig | None,
topk_indices_buffer: torch.Tensor | None,
prefix: str = "",
):
super().__init__()
self.vllm_config = vllm_config
self.config = config
# self.indexer_cfg = config.attn_module_list_cfg[0]["attn_index"]
self.topk_tokens = config.index_topk
self.n_head = config.index_n_heads # 64
self.head_dim = config.index_head_dim # 128
self.rope_dim = config.qk_rope_head_dim # 64
self.q_lora_rank = q_lora_rank # 1536
# no tensor parallel, just replicated
self.wq_b = ReplicatedLinear(
self.q_lora_rank,
self.head_dim * self.n_head,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.wq_b",
)
self.wk = ReplicatedLinear(
hidden_size,
self.head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.wk",
)
self.k_norm = LayerNorm(self.head_dim, eps=1e-6)
self.weights_proj = ReplicatedLinear(
hidden_size, self.n_head, quant_config=None, prefix=f"{prefix}.weights_proj"
)
self.softmax_scale = self.head_dim**-0.5
self.scale_fmt = "ue8m0"
self.quant_block_size = 128 # TODO: get from config
self.topk_indices_buffer = topk_indices_buffer
# NOTE: (zyongye) we use fp8 naive cache,
# where we store value in fp8 and scale in fp32
# per self.quant_block_size element
self.k_cache = DeepseekV32IndexerCache(
head_dim=self.head_dim + self.head_dim // self.quant_block_size * 4,
dtype=torch.uint8,
prefix=f"{prefix}.k_cache",
cache_config=cache_config,
)
self.max_model_len = vllm_config.model_config.max_model_len
self.prefix = prefix
from vllm.v1.attention.backends.mla.indexer import get_max_prefill_buffer_size
self.max_total_seq_len = get_max_prefill_buffer_size(vllm_config)
def forward(
self, hidden_states: torch.Tensor, qr: torch.Tensor, positions, rotary_emb
) -> torch.Tensor:
q, _ = self.wq_b(qr)
q = q.view(-1, self.n_head, self.head_dim)
q_pe, q_nope = torch.split(
q, [self.rope_dim, self.head_dim - self.rope_dim], dim=-1
)
k, _ = self.wk(hidden_states)
k = self.k_norm(k)
k_pe, k_nope = torch.split(
k, [self.rope_dim, self.head_dim - self.rope_dim], dim=-1
)
q_pe, k_pe = rotary_emb(positions, q_pe, k_pe.unsqueeze(1))
q = torch.cat([q_pe, q_nope], dim=-1)
k = torch.cat([k_pe.squeeze(1), k_nope], dim=-1)
# we only quant q here since k quant is fused with cache insertion
q = q.view(-1, self.head_dim)
q_fp8, q_scale = per_token_group_quant_fp8(
q,
self.quant_block_size,
column_major_scales=False,
use_ue8m0=self.scale_fmt is not None,
)
q_fp8 = q_fp8.view(-1, self.n_head, self.head_dim)
q_scale = q_scale.view(-1, self.n_head, 1)
weights, _ = self.weights_proj(hidden_states)
weights = (
weights.unsqueeze(-1) * q_scale * self.softmax_scale * self.n_head**-0.5
)
weights = weights.squeeze(-1)
return torch.ops.vllm.sparse_attn_indexer(
hidden_states,
self.k_cache.prefix,
self.k_cache.kv_cache[0],
q_fp8,
k,
weights,
self.quant_block_size,
self.scale_fmt,
self.topk_tokens,
self.head_dim,
self.max_model_len,
self.max_total_seq_len,
self.topk_indices_buffer,
)
class DeepseekV2MLAAttention(nn.Module):
"""
Main reference: DeepseekV2 paper, and FlashInfer Implementation
(https://arxiv.org/abs/2405.04434 and https://github.com/flashinfer-ai/flashinfer/pull/551).
For more info see MLACommonImpl in:
vllm/v1/attention/backends/mla/utils.py
"""
def __init__(
self,
vllm_config: VllmConfig,
config: DeepseekV2Config | DeepseekV3Config,
hidden_size: int,
num_heads: int,
qk_nope_head_dim: int,
qk_rope_head_dim: int,
v_head_dim: int,
q_lora_rank: int | None,
kv_lora_rank: int,
rope_theta: float = 10000,
rope_scaling: dict[str, Any] | None = None,
max_position_embeddings: int = 8192,
cache_config: CacheConfig | None = None,
quant_config: QuantizationConfig | None = None,
prefix: str = "",
topk_indices_buffer: torch.Tensor | None = None,
) -> None:
super().__init__()
self.hidden_size = hidden_size
self.qk_nope_head_dim = qk_nope_head_dim
self.qk_rope_head_dim = qk_rope_head_dim
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
self.v_head_dim = v_head_dim
self.q_lora_rank = q_lora_rank
self.kv_lora_rank = kv_lora_rank
self.num_heads = num_heads
tp_size = get_tensor_model_parallel_world_size()
assert num_heads % tp_size == 0
self.num_local_heads = num_heads // tp_size
self.scaling = self.qk_head_dim**-0.5
self.rope_theta = rope_theta
self.max_position_embeddings = max_position_embeddings
if self.q_lora_rank is not None:
self.fused_qkv_a_proj = MergedColumnParallelLinear(
self.hidden_size,
[self.q_lora_rank, self.kv_lora_rank + self.qk_rope_head_dim],
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.fused_qkv_a_proj",
disable_tp=True,
)
else:
self.kv_a_proj_with_mqa = ReplicatedLinear(
self.hidden_size,
self.kv_lora_rank + self.qk_rope_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_a_proj_with_mqa",
)
if self.q_lora_rank is not None:
self.q_a_layernorm = RMSNorm(self.q_lora_rank, eps=config.rms_norm_eps)
self.q_b_proj = ColumnParallelLinear(
self.q_lora_rank,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_b_proj",
)
else:
self.q_proj = ColumnParallelLinear(
self.hidden_size,
self.num_heads * self.qk_head_dim,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.q_proj",
)
self.kv_a_layernorm = RMSNorm(self.kv_lora_rank, eps=config.rms_norm_eps)
self.kv_b_proj = ColumnParallelLinear(
self.kv_lora_rank,
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.kv_b_proj",
)
self.o_proj = RowParallelLinear(
self.num_heads * self.v_head_dim,
self.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
if rope_scaling:
rope_scaling["rope_type"] = "deepseek_yarn"
self.rotary_emb = get_rope(
qk_rope_head_dim,
rotary_dim=qk_rope_head_dim,
max_position=max_position_embeddings,
base=rope_theta,
rope_scaling=rope_scaling,
is_neox_style=False,
)
if rope_scaling:
mscale_all_dim = rope_scaling.get("mscale_all_dim", False)
scaling_factor = rope_scaling["factor"]
mscale = yarn_get_mscale(scaling_factor, float(mscale_all_dim))
self.scaling = self.scaling * mscale * mscale
self.is_v32 = hasattr(config, "index_topk")
if self.is_v32:
self.indexer = Indexer(
vllm_config,
config,
hidden_size,
q_lora_rank,
quant_config,
cache_config,
topk_indices_buffer,
f"{prefix}.indexer",
)
else:
self.indexer = None
mla_modules = MLAModules(
kv_a_layernorm=self.kv_a_layernorm,
kv_b_proj=self.kv_b_proj,
rotary_emb=self.rotary_emb,
o_proj=self.o_proj,
fused_qkv_a_proj=self.fused_qkv_a_proj
if self.q_lora_rank is not None
else None,
kv_a_proj_with_mqa=self.kv_a_proj_with_mqa
if self.q_lora_rank is None
else None,
q_a_layernorm=self.q_a_layernorm if self.q_lora_rank is not None else None,
q_b_proj=self.q_b_proj if self.q_lora_rank is not None else None,
q_proj=self.q_proj if self.q_lora_rank is None else None,
indexer=self.indexer,
is_sparse=self.is_v32,
topk_indices_buffer=topk_indices_buffer,
)
self.mla_attn = MultiHeadLatentAttentionWrapper(
self.hidden_size,
self.num_local_heads,
self.scaling,
self.qk_nope_head_dim,
self.qk_rope_head_dim,
self.v_head_dim,
self.q_lora_rank,
self.kv_lora_rank,
mla_modules,
cache_config,
quant_config,
prefix,
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
return self.mla_attn(positions, hidden_states)
class DeepseekV2DecoderLayer(nn.Module):
def __init__(
self,
vllm_config: VllmConfig,
prefix: str,
config: DeepseekV2Config | None = None,
topk_indices_buffer: torch.Tensor | None = None,
) -> None:
super().__init__()
if config is None:
config = vllm_config.model_config.hf_config
model_config = vllm_config.model_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
parallel_config = vllm_config.parallel_config
self.hidden_size = config.hidden_size
rope_theta = getattr(config, "rope_theta", 10000)
rope_scaling = getattr(config, "rope_scaling", None)
max_position_embeddings = getattr(config, "max_position_embeddings", 8192)
moe_layer_freq = getattr(config, "moe_layer_freq", 1)
# DecoderLayers are created with `make_layers` which passes the prefix
# with the layer's index.
layer_idx = int(prefix.split(sep=".")[-1])
self.layer_idx = layer_idx
# verify MLA attention specific fields
qk_nope_head_dim = getattr(config, "qk_nope_head_dim", 0)
qk_rope_head_dim = getattr(config, "qk_rope_head_dim", 0)
v_head_dim = getattr(config, "v_head_dim", 0)
kv_lora_rank = getattr(config, "kv_lora_rank", 0)
use_mha = config.model_type == "deepseek" or all(
dim == 0 for dim in (qk_nope_head_dim, qk_rope_head_dim)
)
if use_mha:
attn_cls = DeepseekAttention
elif model_config.use_mla:
attn_cls = DeepseekV2MLAAttention
else:
attn_cls = DeepseekV2Attention
self.self_attn = attn_cls(
vllm_config=vllm_config,
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
qk_nope_head_dim=qk_nope_head_dim,
qk_rope_head_dim=qk_rope_head_dim,
v_head_dim=v_head_dim,
q_lora_rank=config.q_lora_rank if hasattr(config, "q_lora_rank") else None,
kv_lora_rank=kv_lora_rank,
rope_theta=rope_theta,
rope_scaling=rope_scaling,
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
topk_indices_buffer=topk_indices_buffer,
)
if (
config.n_routed_experts is not None
and layer_idx >= config.first_k_dense_replace
and layer_idx % moe_layer_freq == 0
):
self.mlp = DeepseekV2MoE(
config=config,
parallel_config=parallel_config,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
else:
self.mlp = DeepseekV2MLP(
hidden_size=config.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
self.routed_scaling_factor = getattr(config, "routed_scaling_factor", 1.0)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> torch.Tensor:
# Self Attention
if residual is None:
residual = hidden_states.clone()
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(
positions=positions,
hidden_states=hidden_states,
)
if (
not isinstance(self.self_attn, DeepseekAttention)
and hidden_states.dtype == torch.float16
):
# Fix FP16 overflow
# We scale both hidden_states and residual before
# rmsnorm, and rmsnorm result would not affect by scale.
hidden_states *= 1.0 / self.routed_scaling_factor
if self.layer_idx == 0:
# The residual is shared by all layers, we only scale it on
# first layer.
residual *= 1.0 / self.routed_scaling_factor
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.mlp(hidden_states)
if isinstance(self.mlp, DeepseekV2MLP) and hidden_states.dtype == torch.float16:
# Fix FP16 overflow
# Scaling the DeepseekV2MLP output, it is the input of
# input_layernorm of next decoder layer.
# The scaling of DeepseekV2MOE output would be done in the forward
# of DeepseekV2MOE
hidden_states *= 1.0 / self.routed_scaling_factor
return hidden_states, residual
@support_torch_compile
class DeepseekV2Model(nn.Module):
fall_back_to_pt_during_load = False
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.device = current_platform.device_type
self.vocab_size = config.vocab_size
self.is_v32 = hasattr(config, "index_topk")
if self.is_v32:
topk_tokens = config.index_topk
topk_indices_buffer = torch.empty(
vllm_config.scheduler_config.max_num_batched_tokens,
topk_tokens,
dtype=torch.int32,
device=self.device,
)
else:
topk_indices_buffer = None
if get_pp_group().is_first_rank:
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embed_tokens",
)
else:
self.embed_tokens = PPMissingLayer()
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: DeepseekV2DecoderLayer(
vllm_config, prefix, topk_indices_buffer=topk_indices_buffer
),
prefix=f"{prefix}.layers",
)
if get_pp_group().is_last_rank:
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
else:
self.norm = PPMissingLayer()
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
["hidden_states", "residual"], config.hidden_size
)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
if get_pp_group().is_first_rank:
if inputs_embeds is not None:
hidden_states = inputs_embeds
else:
hidden_states = self.embed_input_ids(input_ids)
residual = None
else:
assert intermediate_tensors is not None
hidden_states = intermediate_tensors["hidden_states"]
residual = intermediate_tensors["residual"]
for layer in islice(self.layers, self.start_layer, self.end_layer):
hidden_states, residual = layer(positions, hidden_states, residual)
if not get_pp_group().is_last_rank:
return IntermediateTensors(
{"hidden_states": hidden_states, "residual": residual}
)
hidden_states, _ = self.norm(hidden_states, residual)
return hidden_states
class DeepseekV2MixtureOfExperts(MixtureOfExperts):
moe_mlp_layers: list[DeepseekV2MoE]
"""
List of MoE MLP layers in the model.
"""
def extract_moe_parameters(self, example_moe: DeepseekV2MoE | None):
if example_moe is None:
self.num_moe_layers = 0
self.num_expert_groups = 0
self.num_logical_experts = 0
self.num_physical_experts = 0
self.num_local_physical_experts = 0
self.num_routed_experts = 0
self.num_shared_experts = 0
self.num_redundant_experts = 0
logger.warning("DeepSeekV2: No DeepseekV2MoE layer found in model.layers.")
else:
self.num_logical_experts = example_moe.n_logical_experts
self.num_physical_experts = example_moe.n_physical_experts
self.num_local_physical_experts = example_moe.n_local_physical_experts
self.num_routed_experts = example_moe.n_routed_experts
self.num_shared_experts = example_moe.n_shared_experts
self.num_redundant_experts = example_moe.n_redundant_experts
def update_physical_experts_metadata(
self,
num_physical_experts: int,
num_local_physical_experts: int,
) -> None:
assert self.num_local_physical_experts == num_local_physical_experts
self.num_physical_experts = num_physical_experts
self.num_local_physical_experts = num_local_physical_experts
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
for moe in self.moe_mlp_layers:
moe.n_local_physical_experts = num_local_physical_experts
moe.n_physical_experts = num_physical_experts
moe.n_redundant_experts = self.num_redundant_experts
moe.experts.update_expert_map()
class DeepseekV2ForCausalLM(
nn.Module, SupportsPP, DeepseekV2MixtureOfExperts, SupportsLoRA
):
packed_modules_mapping = {
"gate_up_proj": ["gate_proj", "up_proj"],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
qk_nope_head_dim = getattr(config, "qk_nope_head_dim", 0)
qk_rope_head_dim = getattr(config, "qk_rope_head_dim", 0)
self.use_mha = config.model_type == "deepseek" or all(
dim == 0 for dim in (qk_nope_head_dim, qk_rope_head_dim)
)
if self.use_mha:
self.packed_modules_mapping["qkv_proj"] = ["q_proj", "k_proj", "v_proj"]
# `packed_modules_mapping` needs to be modified before
# initializing DeepseekV2Model, as it is passed inplace to
# quantization config init and may be used to select the
# quant_method for relevant layers during initialization.
self.fuse_qkv_a_proj = (
hasattr(config, "q_lora_rank") and config.q_lora_rank is not None
)
if self.fuse_qkv_a_proj:
self.packed_modules_mapping["fused_qkv_a_proj"] = [
"q_a_proj",
"kv_a_proj_with_mqa",
]
self.model = DeepseekV2Model(
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
)
if get_pp_group().is_last_rank:
self.lm_head = ParallelLMHead(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=maybe_prefix(prefix, "lm_head"),
)
else:
self.lm_head = PPMissingLayer()
self.logits_processor = LogitsProcessor(config.vocab_size)
self.make_empty_intermediate_tensors = (
self.model.make_empty_intermediate_tensors
)
# Set MoE hyperparameters
self.num_moe_layers = (
self.config.num_hidden_layers - self.config.first_k_dense_replace
)
self.set_moe_parameters()
def set_moe_parameters(self):
self.expert_weights = []
self.num_expert_groups = getattr(self.config, "n_group", 1)
self.moe_layers = []
self.moe_mlp_layers = []
example_moe = None
for layer in self.model.layers:
if isinstance(layer, PPMissingLayer):
continue
assert isinstance(layer, DeepseekV2DecoderLayer)
if isinstance(layer.mlp, DeepseekV2MoE):
# Pick last one layer since the first ones may be dense layers.
example_moe = layer.mlp
self.moe_mlp_layers.append(layer.mlp)
self.moe_layers.append(layer.mlp.experts)
self.extract_moe_parameters(example_moe)
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.embed_input_ids(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
) -> torch.Tensor | IntermediateTensors:
hidden_states = self.model(
input_ids, positions, intermediate_tensors, inputs_embeds
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
logits = self.logits_processor(self.lm_head, hidden_states)
return logits
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]:
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
return SharedFusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts,
num_redundant_experts=0,
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
rocm_aiter_moe_shared_expert_enabled = (
rocm_aiter_ops.is_fusion_moe_shared_experts_enabled()
)
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
mla_params_mapping = [
("fused_qkv_a_proj", "q_a_proj", 0),
("fused_qkv_a_proj", "kv_a_proj_with_mqa", 1),
]
mha_params_mapping = [
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
]
if self.use_mha:
stacked_params_mapping.extend(mha_params_mapping)
else:
stacked_params_mapping.extend(mla_params_mapping)
# Params for weights, fp8 weight scales, fp8 activation scales
# (param_name, weight_name, expert_id, shard_id)
expert_params_mapping = SharedFusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.config.n_routed_experts
+ (
self.config.n_shared_experts
if rocm_aiter_moe_shared_expert_enabled
else 0
),
num_redundant_experts=self.num_redundant_experts,
)
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if "rotary_emb.inv_freq" in name:
continue
spec_layer = get_spec_layer_idx_from_weight_name(self.config, name)
if spec_layer is not None:
continue # skip spec decode layers for main model
is_fuse_shared_experts_layer = rocm_aiter_moe_shared_expert_enabled and (
"mlp.shared_experts" in name
)
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip non-stacked layers and experts (experts handled below).
if weight_name not in name:
continue
# We have mlp.experts[0].gate_proj in the checkpoint.
# Since we handle the experts below in expert_params_mapping,
# we need to skip here BEFORE we update the name, otherwise
# name will be updated to mlp.experts[0].gate_up_proj, which
# will then be updated below in expert_params_mapping
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
if ("mlp.experts." in name) and name not in params_dict:
continue
if is_fuse_shared_experts_layer:
continue
name_mapped = name.replace(weight_name, param_name)
# QKV fusion is optional, fall back to normal
# weight loading if it's not enabled
# if go with fusion option, then update name
if (
param_name == "fused_qkv_a_proj"
) and name_mapped not in params_dict:
continue
else:
name = name_mapped
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
is_expert_weight = False
# Special handling: when AITER fusion_shared_experts is enabled,
# checkpoints may provide a single widened shared_experts tensor
# without explicit expert indices
# (e.g. ...mlp.shared_experts.gate_proj.weight).
# For models with multiple shared experts, split that tensor
# evenly into per-shared-expert slices and load them into
# appended expert slots mlp.experts.{n_routed_experts + j}.*
# accordingly.
num_chunks = 1
if is_fuse_shared_experts_layer:
num_chunks = getattr(self.config, "n_shared_experts", 1) or 1
# Determine split axis based on op type
# gate/up: ColumnParallel → split along dim 0
# down: RowParallel → split along dim 1
split_dim = 1 if "down_proj.weight" in name else 0
total = loaded_weight.shape[split_dim]
assert total % num_chunks == 0, (
f"Shared expert weight dim {total} "
f"not divisible by num_chunks {num_chunks}"
)
chunk_size = total // num_chunks
for j in range(num_chunks):
chunk_name = name
weight_to_load = loaded_weight
if is_fuse_shared_experts_layer:
if split_dim == 0:
weight_to_load = loaded_weight[
j * chunk_size : (j + 1) * chunk_size, :
]
else:
weight_to_load = loaded_weight[
:, j * chunk_size : (j + 1) * chunk_size
]
# Synthesize an expert-style name so expert mapping
# can route it
chunk_name = name.replace(
"mlp.shared_experts",
f"mlp.experts.{self.config.n_routed_experts + j}",
)
# Use expert_params_mapping to locate the destination
# param and delegate to its expert-aware weight_loader
# with expert_id.
for mapping in expert_params_mapping:
param_name, weight_name, expert_id, shard_id = mapping
if weight_name not in chunk_name:
continue
# Anyway, this is an expert weight and should not be
# attempted to load as other weights later
is_expert_weight = True
# Do not modify `name` since the loop may continue here
# Instead, create a new variable
name_mapped = chunk_name.replace(weight_name, param_name)
if is_pp_missing_parameter(name_mapped, self):
continue
param = params_dict[name_mapped]
# We should ask the weight loader to return success or
# not here since otherwise we may skip experts with
# other available replicas.
weight_loader = typing.cast(
Callable[..., bool], param.weight_loader
)
success = weight_loader(
param,
weight_to_load,
name_mapped,
shard_id=shard_id,
expert_id=expert_id,
return_success=True,
)
if success:
if not is_fuse_shared_experts_layer:
name = name_mapped
else:
loaded_params.add(name_mapped)
break
else:
if is_expert_weight:
# We've checked that this is an expert weight
# However it's not mapped locally to this rank
# So we simply skip it
continue
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
weight_loader(param, loaded_weight)
if not is_fuse_shared_experts_layer:
loaded_params.add(name)
return loaded_params
class DeepseekForCausalLM(DeepseekV2ForCausalLM):
pass
class DeepseekV3ForCausalLM(DeepseekV2ForCausalLM):
pass
# Compatibility with
# https://huggingface.co/deepseek-ai/DeepSeek-V3-Base/blob/main/configuration_deepseek.py
def get_spec_layer_idx_from_weight_name(
config: DeepseekV2Config | DeepseekV3Config, weight_name: str
) -> int | None:
if (
hasattr(config, "num_nextn_predict_layers")
and config.num_nextn_predict_layers > 0
):
layer_idx = config.num_hidden_layers
for i in range(config.num_nextn_predict_layers):
if weight_name.startswith(f"model.layers.{layer_idx + i}."):
return layer_idx + i
return None