mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-19 07:35:01 +08:00
579 lines
22 KiB
Python
579 lines
22 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
# ruff: noqa: E501
|
|
# Adapted from https://huggingface.co/moonshotai/Kimi-VL-A3B-Instruct/blob/main/modeling_kimi_vl.py
|
|
# Copyright 2025 The Moonshot AI Team, DeepSeek-AI, and HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# The code is based on llava (llava/modeling_llava.py) and DeepSeek-V3 (DeepSeek-V3/modeling_deepseek.py), but modified for KimiVL.
|
|
#
|
|
# Licensing Information:
|
|
# - Code derived from llava (llava/modeling_llava.py) and DeepSeek-V3 (DeepSeek-V3/modeling_deepseek.py) is licensed under the Apache License, Version 2.0.
|
|
# - Other parts of the code are licensed under the MIT License.
|
|
#
|
|
# Apache License, Version 2.0:
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# MIT License:
|
|
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
# of this software and associated documentation files (the "Software"), to deal
|
|
# in the Software without restriction, including without limitation the rights
|
|
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
# copies of the Software, and to permit persons to whom the Software is
|
|
# furnished to do so, subject to the following conditions:
|
|
#
|
|
# The above copyright notice and this permission notice shall be included in all
|
|
# copies or substantial portions of the Software.
|
|
#
|
|
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
# SOFTWARE.
|
|
|
|
import copy
|
|
import math
|
|
from collections.abc import Iterable, Mapping, Sequence
|
|
from dataclasses import dataclass
|
|
from typing import Annotated, Any, Literal
|
|
|
|
import torch
|
|
from torch import nn
|
|
from transformers import BatchFeature, DeepseekV2Config
|
|
from transformers.activations import GELUActivation
|
|
|
|
from vllm.config import VllmConfig
|
|
from vllm.config.multimodal import BaseDummyOptions
|
|
from vllm.distributed import get_pp_group
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE
|
|
from vllm.model_executor.layers.linear import ReplicatedLinear
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.model_executor.models.deepseek_v2 import DeepseekV2Model
|
|
from vllm.model_executor.models.interfaces import SupportsMultiModal, SupportsPP
|
|
from vllm.model_executor.models.moonvit import MoonVitPretrainedModel
|
|
from vllm.multimodal import MULTIMODAL_REGISTRY
|
|
from vllm.multimodal.inputs import (
|
|
MultiModalDataDict,
|
|
MultiModalFieldConfig,
|
|
MultiModalKwargsItems,
|
|
NestedTensors,
|
|
)
|
|
from vllm.multimodal.parse import (
|
|
ImageEmbeddingItems,
|
|
ImageProcessorItems,
|
|
MultiModalDataItems,
|
|
)
|
|
from vllm.multimodal.processing import (
|
|
BaseMultiModalProcessor,
|
|
BaseProcessingInfo,
|
|
PromptReplacement,
|
|
PromptUpdate,
|
|
)
|
|
from vllm.multimodal.profiling import BaseDummyInputsBuilder
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs import KimiVLConfig, MoonViTConfig
|
|
from vllm.utils.tensor_schema import TensorSchema, TensorShape
|
|
|
|
from .utils import PPMissingLayer, is_pp_missing_parameter, maybe_prefix
|
|
from .vision import run_dp_sharded_mrope_vision_model
|
|
|
|
|
|
# For dummy input only
|
|
@dataclass
|
|
class MaxImageTokenMeta:
|
|
width: int = 1024
|
|
height: int = 1024
|
|
|
|
|
|
class KimiVLMultiModalProjector(nn.Module):
|
|
def __init__(
|
|
self, config: KimiVLConfig, use_data_parallel: bool = False, prefix: str = ""
|
|
):
|
|
super().__init__()
|
|
self.use_data_parallel = use_data_parallel
|
|
|
|
self.hidden_size = (
|
|
config.vision_config.hidden_size
|
|
* config.vision_config.merge_kernel_size[0]
|
|
* config.vision_config.merge_kernel_size[1]
|
|
)
|
|
|
|
self.pre_norm = torch.nn.LayerNorm(config.vision_config.hidden_size, eps=1e-5)
|
|
self.linear_1 = ReplicatedLinear(
|
|
self.hidden_size,
|
|
self.hidden_size,
|
|
bias=True,
|
|
prefix=maybe_prefix(prefix, "linear_1"),
|
|
)
|
|
self.linear_2 = ReplicatedLinear(
|
|
self.hidden_size,
|
|
config.text_config.hidden_size,
|
|
bias=True,
|
|
prefix=maybe_prefix(prefix, "linear_2"),
|
|
)
|
|
self.act = GELUActivation()
|
|
|
|
def forward(self, image_features: torch.Tensor) -> torch.Tensor:
|
|
hidden_states = self.pre_norm(image_features).view(-1, self.hidden_size)
|
|
hidden_states, _ = self.linear_1(hidden_states)
|
|
hidden_states = self.act(hidden_states)
|
|
hidden_states, _ = self.linear_2(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
class KimiVLImagePixelInputs(TensorSchema):
|
|
"""
|
|
Dimensions:
|
|
- nc: Number of channels
|
|
- np: Number of patches
|
|
- ps: Patch size
|
|
- ni: Number of images
|
|
"""
|
|
|
|
type: Literal["pixel_values"] = "pixel_values"
|
|
|
|
pixel_values: Annotated[
|
|
torch.Tensor | list[torch.Tensor],
|
|
TensorShape("np", 3, "ps", "ps"),
|
|
]
|
|
|
|
image_grid_hws: Annotated[torch.Tensor, TensorShape("ni", 2)]
|
|
|
|
|
|
# TODO: support embeds too
|
|
# We only support pixel input for kimi-vl now
|
|
KimiVLImageInputs = KimiVLImagePixelInputs
|
|
|
|
|
|
class KimiVLProcessingInfo(BaseProcessingInfo):
|
|
def get_hf_config(self):
|
|
return self.ctx.get_hf_config(KimiVLConfig)
|
|
|
|
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
|
|
return {"image": None}
|
|
|
|
def get_num_image_tokens(
|
|
self,
|
|
*,
|
|
image_width: int,
|
|
image_height: int,
|
|
) -> int:
|
|
hf_processor = self.get_hf_processor()
|
|
patch_size = hf_processor.image_processor.patch_size
|
|
kernel_size = hf_processor.image_processor.merge_kernel_size
|
|
in_token_limit = hf_processor.image_processor.in_token_limit
|
|
height = image_height
|
|
width = image_width
|
|
assert isinstance(height, int), f"height must be int, current height {height}"
|
|
assert isinstance(width, int), f"width must be int, current width {width}"
|
|
assert kernel_size is not None, "kernel_size must be specified"
|
|
|
|
if (width // patch_size) * (height // patch_size) > in_token_limit:
|
|
scale = math.sqrt(
|
|
in_token_limit / ((width // patch_size) * (height // patch_size))
|
|
)
|
|
new_w, new_h = int(width * scale), int(height * scale)
|
|
width, height = new_w, new_h
|
|
|
|
kernel_height, kernel_width = kernel_size
|
|
|
|
pad_height = (
|
|
kernel_height * patch_size - height % (kernel_height * patch_size)
|
|
) % (kernel_height * patch_size)
|
|
pad_width = (
|
|
kernel_width * patch_size - width % (kernel_width * patch_size)
|
|
) % (kernel_width * patch_size)
|
|
|
|
# Calculate new dimensions after padding and patching
|
|
token_height = (height + pad_height) // (kernel_size[0] * patch_size)
|
|
token_width = (width + pad_width) // (kernel_size[1] * patch_size)
|
|
return int(token_height * token_width)
|
|
|
|
@property
|
|
def image_token_id(self) -> int:
|
|
return self.get_hf_config().media_placeholder_token_id
|
|
|
|
|
|
class KimiVLDummyInputsBuilder(BaseDummyInputsBuilder[KimiVLProcessingInfo]):
|
|
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
processor = self.info.get_hf_processor()
|
|
image_token = processor.image_token
|
|
|
|
return image_token * num_images
|
|
|
|
def get_dummy_mm_data(
|
|
self,
|
|
seq_len: int,
|
|
mm_counts: Mapping[str, int],
|
|
mm_options: Mapping[str, BaseDummyOptions] | None = None,
|
|
) -> MultiModalDataDict:
|
|
num_images = mm_counts.get("image", 0)
|
|
|
|
image_overrides = mm_options.get("image") if mm_options else None
|
|
|
|
return {
|
|
"image": self._get_dummy_images(
|
|
width=MaxImageTokenMeta.width,
|
|
height=MaxImageTokenMeta.height,
|
|
num_images=num_images,
|
|
overrides=image_overrides,
|
|
)
|
|
}
|
|
|
|
|
|
class KimiVLMultiModalProcessor(BaseMultiModalProcessor[KimiVLProcessingInfo]):
|
|
def _get_mm_fields_config(
|
|
self,
|
|
hf_inputs: BatchFeature,
|
|
hf_processor_mm_kwargs: Mapping[str, object],
|
|
) -> Mapping[str, MultiModalFieldConfig]:
|
|
image_grid_hws = hf_inputs.get("image_grid_hws", torch.empty((0, 2)))
|
|
image_grid_sizes = image_grid_hws.prod(-1)
|
|
|
|
# pixel_values is merged as a single large tensor
|
|
# image_grid_hws is shapes for each subtensor in pixel_values
|
|
return dict(
|
|
pixel_values=MultiModalFieldConfig.flat_from_sizes(
|
|
"image", image_grid_sizes
|
|
),
|
|
image_grid_hws=MultiModalFieldConfig.batched("image"),
|
|
)
|
|
|
|
def _get_prompt_updates(
|
|
self,
|
|
mm_items: MultiModalDataItems,
|
|
hf_processor_mm_kwargs: Mapping[str, Any],
|
|
out_mm_kwargs: MultiModalKwargsItems,
|
|
) -> Sequence[PromptUpdate]:
|
|
image_token_id = self.info.image_token_id
|
|
|
|
def get_replacement(item_idx: int):
|
|
images = mm_items.get_items(
|
|
"image", (ImageEmbeddingItems, ImageProcessorItems)
|
|
)
|
|
|
|
if isinstance(images, ImageEmbeddingItems):
|
|
num_image_tokens = images.get_feature_size(item_idx)
|
|
else:
|
|
image_size = images.get_image_size(item_idx)
|
|
num_image_tokens = self.info.get_num_image_tokens(
|
|
image_width=image_size.width,
|
|
image_height=image_size.height,
|
|
)
|
|
|
|
return [image_token_id] * num_image_tokens
|
|
|
|
return [
|
|
PromptReplacement(
|
|
modality="image",
|
|
target=[image_token_id],
|
|
replacement=get_replacement,
|
|
),
|
|
]
|
|
|
|
|
|
@MULTIMODAL_REGISTRY.register_processor(
|
|
KimiVLMultiModalProcessor,
|
|
info=KimiVLProcessingInfo,
|
|
dummy_inputs=KimiVLDummyInputsBuilder,
|
|
)
|
|
class KimiVLForConditionalGeneration(nn.Module, SupportsMultiModal, SupportsPP):
|
|
merge_by_field_config = True
|
|
|
|
supports_encoder_tp_data = True
|
|
|
|
@classmethod
|
|
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
|
|
if modality.startswith("image"):
|
|
return "<|media_start|>image<|media_content|><|media_pad|><|media_end|>"
|
|
|
|
raise ValueError("Only image modality is supported")
|
|
|
|
def __init__(
|
|
self,
|
|
vllm_config: VllmConfig,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
model_config = vllm_config.model_config
|
|
config: KimiVLConfig = model_config.hf_config
|
|
self.config = config
|
|
quant_config = vllm_config.quant_config
|
|
|
|
assert isinstance(config.vision_config, MoonViTConfig)
|
|
self.use_data_parallel = (
|
|
model_config.multimodal_config.mm_encoder_tp_mode == "data"
|
|
)
|
|
self.hidden_size = config.text_config.hidden_size
|
|
self.vision_tower = MoonVitPretrainedModel(
|
|
config.vision_config,
|
|
self.use_data_parallel,
|
|
prefix=maybe_prefix(prefix, "vision_tower"),
|
|
)
|
|
|
|
self.multi_modal_projector = KimiVLMultiModalProjector(
|
|
config=config,
|
|
use_data_parallel=self.use_data_parallel,
|
|
prefix=maybe_prefix(prefix, "multi_modal_projector"),
|
|
)
|
|
|
|
self.quant_config = quant_config
|
|
sub_vllm_config = copy.deepcopy(vllm_config)
|
|
sub_vllm_config.model_config.hf_config = (
|
|
sub_vllm_config.model_config.hf_config.text_config
|
|
)
|
|
self.language_model = DeepseekV2Model(
|
|
vllm_config=sub_vllm_config,
|
|
prefix=maybe_prefix(prefix, "language_model"),
|
|
)
|
|
if get_pp_group().is_last_rank:
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.text_config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
else:
|
|
self.lm_head = PPMissingLayer()
|
|
self.make_empty_intermediate_tensors = (
|
|
self.language_model.make_empty_intermediate_tensors
|
|
)
|
|
logit_scale = getattr(config, "logit_scale", 1.0)
|
|
self.logits_processor = LogitsProcessor(config.vocab_size, scale=logit_scale)
|
|
self.media_placeholder: int = self.config.media_placeholder_token_id
|
|
|
|
def _parse_and_validate_image_input(
|
|
self, **kwargs: object
|
|
) -> KimiVLImageInputs | None:
|
|
# image input type must be pixel values now
|
|
pixel_values = kwargs.pop("pixel_values", None)
|
|
image_grid_hws = kwargs.pop("image_grid_hws", None)
|
|
|
|
if pixel_values is None:
|
|
return None
|
|
|
|
return KimiVLImagePixelInputs(
|
|
type="pixel_values",
|
|
pixel_values=pixel_values,
|
|
image_grid_hws=image_grid_hws,
|
|
)
|
|
|
|
# perform vt on processored pixel_values
|
|
@torch.inference_mode()
|
|
def _process_image_pixels(self, inputs: KimiVLImagePixelInputs) -> torch.Tensor:
|
|
assert self.vision_tower is not None
|
|
|
|
pixel_values = inputs["pixel_values"]
|
|
image_grid_hws = inputs["image_grid_hws"]
|
|
if self.use_data_parallel:
|
|
return run_dp_sharded_mrope_vision_model(
|
|
self.vision_tower,
|
|
pixel_values,
|
|
image_grid_hws.tolist(),
|
|
rope_type="rope_2d",
|
|
)
|
|
else:
|
|
return self.vision_tower(pixel_values, image_grid_hws)
|
|
|
|
def _process_image_input(self, image_input: KimiVLImageInputs) -> torch.Tensor:
|
|
assert image_input["type"] == "pixel_values"
|
|
image_features = self._process_image_pixels(image_input)
|
|
assert isinstance(image_features, (list, tuple))
|
|
lengths = [x.shape[0] for x in image_features]
|
|
return self.multi_modal_projector(torch.cat(image_features)).split(lengths)
|
|
|
|
def get_language_model(self) -> torch.nn.Module:
|
|
return self.language_model
|
|
|
|
def embed_multimodal(self, **kwargs: object) -> NestedTensors | None:
|
|
# Validate the multimodal input keyword arguments
|
|
image_input = self._parse_and_validate_image_input(**kwargs)
|
|
if image_input is None:
|
|
return None
|
|
|
|
# Run multimodal inputs through encoder and projector
|
|
vision_embeddings = self._process_image_input(image_input)
|
|
return vision_embeddings
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs: object,
|
|
) -> IntermediateTensors:
|
|
if intermediate_tensors is not None:
|
|
inputs_embeds = None
|
|
|
|
hidden_states = self.language_model(
|
|
input_ids=input_ids,
|
|
positions=positions,
|
|
intermediate_tensors=intermediate_tensors,
|
|
inputs_embeds=inputs_embeds,
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(self, hidden_states: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
logits = self.logits_processor(self.lm_head, hidden_states, **kwargs)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
|
|
config = self.config.text_config
|
|
_KEYS_TO_MODIFY_MAPPING = {
|
|
"language_model.lm_head": "lm_head",
|
|
"language_model.model": "language_model",
|
|
}
|
|
# only doing this for language model part for now.
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
(".gate_up_proj", ".gate_proj", 0),
|
|
(".gate_up_proj", ".up_proj", 1),
|
|
]
|
|
use_mha = (
|
|
config.model_type == "deepseek"
|
|
or config.qk_nope_head_dim + config.qk_rope_head_dim == 0
|
|
)
|
|
if use_mha:
|
|
stacked_params_mapping += [
|
|
(".qkv_proj", ".q_proj", "q"),
|
|
(".qkv_proj", ".k_proj", "k"),
|
|
(".qkv_proj", ".v_proj", "v"),
|
|
]
|
|
if getattr(config, "n_routed_experts", None):
|
|
# Params for weights, fp8 weight scales, fp8 activation scales
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
|
ckpt_gate_proj_name="gate_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="up_proj",
|
|
num_experts=config.n_routed_experts,
|
|
)
|
|
else:
|
|
expert_params_mapping = []
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
|
|
for args in weights:
|
|
name, loaded_weight = args[:2]
|
|
kwargs = args[2] if len(args) > 2 else {}
|
|
if "rotary_emb.inv_freq" in name:
|
|
continue
|
|
|
|
spec_layer = get_spec_layer_idx_from_weight_name(config, name)
|
|
if spec_layer is not None:
|
|
continue # skip spec decode layers for main model
|
|
|
|
if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name:
|
|
# Models trained using ColossalAI may include these tensors in
|
|
# the checkpoint. Skip them.
|
|
continue
|
|
for key_to_modify, new_key in _KEYS_TO_MODIFY_MAPPING.items():
|
|
if key_to_modify in name:
|
|
name = name.replace(key_to_modify, new_key)
|
|
use_default_weight_loading = False
|
|
if "vision" in name:
|
|
if self.vision_tower is not None:
|
|
# We only do sharding for language model and
|
|
# not vision model for now.
|
|
use_default_weight_loading = True
|
|
else:
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
# We have mlp.experts[0].gate_proj in the checkpoint.
|
|
# Since we handle the experts below in expert_params_mapping,
|
|
# we need to skip here BEFORE we update the name, otherwise
|
|
# name will be updated to mlp.experts[0].gate_up_proj, which
|
|
# will then be updated below in expert_params_mapping
|
|
# for mlp.experts[0].gate_gate_up_proj, which breaks load.
|
|
if ("mlp.experts." in name) and name not in params_dict:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id, **kwargs)
|
|
break
|
|
else:
|
|
for idx, (
|
|
param_name,
|
|
weight_name,
|
|
expert_id,
|
|
shard_id,
|
|
) in enumerate(expert_params_mapping):
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name,
|
|
expert_id=expert_id,
|
|
shard_id=shard_id,
|
|
**kwargs,
|
|
)
|
|
break
|
|
else:
|
|
use_default_weight_loading = True
|
|
if use_default_weight_loading:
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader)
|
|
weight_loader(param, loaded_weight, **kwargs)
|
|
|
|
|
|
def get_spec_layer_idx_from_weight_name(
|
|
config: DeepseekV2Config, weight_name: str
|
|
) -> int | None:
|
|
if hasattr(config, "num_nextn_predict_layers") and (
|
|
config.num_nextn_predict_layers > 0
|
|
):
|
|
layer_idx = config.num_hidden_layers
|
|
for i in range(config.num_nextn_predict_layers):
|
|
if weight_name.startswith(f"model.layers.{layer_idx + i}."):
|
|
return layer_idx + i
|
|
return None
|