mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-19 01:55:01 +08:00
853 lines
30 KiB
Python
853 lines
30 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
# Adapted from https://github.com/vllm-project/vllm/blob/94d8ec8d2bcb4ec55e33022b313c7e978edf05e1/vllm/model_executor/models/bamba.py
|
|
# Copyright 2024 HuggingFace Inc. team. All rights reserved.
|
|
# Copyright (c) 2025, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""Inference-only NemotronH model."""
|
|
|
|
import typing
|
|
from collections.abc import Callable, Iterable
|
|
from itertools import islice
|
|
|
|
import torch
|
|
from torch import nn
|
|
|
|
from vllm.attention.layer import Attention
|
|
from vllm.compilation.decorators import support_torch_compile
|
|
from vllm.config import CacheConfig, ModelConfig, VllmConfig
|
|
from vllm.config.parallel import ParallelConfig
|
|
from vllm.distributed import get_ep_group, get_tensor_model_parallel_world_size
|
|
from vllm.distributed.communication_op import tensor_model_parallel_all_gather
|
|
from vllm.distributed.parallel_state import get_pp_group
|
|
from vllm.model_executor.layers.activation import ReLUSquaredActivation
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE, SharedFusedMoE
|
|
from vllm.model_executor.layers.fused_moe.utils import activation_without_mul
|
|
from vllm.model_executor.layers.layernorm import RMSNorm
|
|
from vllm.model_executor.layers.linear import (
|
|
ColumnParallelLinear,
|
|
QKVParallelLinear,
|
|
ReplicatedLinear,
|
|
RowParallelLinear,
|
|
)
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor
|
|
from vllm.model_executor.layers.mamba.mamba_mixer2 import MambaMixer2
|
|
from vllm.model_executor.layers.mamba.mamba_utils import (
|
|
MambaStateDtypeCalculator,
|
|
MambaStateShapeCalculator,
|
|
)
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import (
|
|
ParallelLMHead,
|
|
VocabParallelEmbedding,
|
|
)
|
|
from vllm.model_executor.model_loader.weight_utils import (
|
|
default_weight_loader,
|
|
maybe_remap_kv_scale_name,
|
|
)
|
|
from vllm.model_executor.models.interfaces import (
|
|
HasInnerState,
|
|
IsHybrid,
|
|
MixtureOfExperts,
|
|
SupportsLoRA,
|
|
SupportsMambaPrefixCaching,
|
|
SupportsPP,
|
|
SupportsQuant,
|
|
)
|
|
from vllm.model_executor.models.utils import (
|
|
AutoWeightsLoader,
|
|
WeightsMapper,
|
|
is_pp_missing_parameter,
|
|
make_empty_intermediate_tensors_factory,
|
|
make_layers,
|
|
maybe_prefix,
|
|
sequence_parallel_chunk,
|
|
)
|
|
from vllm.sequence import IntermediateTensors
|
|
from vllm.transformers_utils.configs import NemotronHConfig
|
|
|
|
|
|
class NemotronHMLP(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: NemotronHConfig,
|
|
intermediate_size: int,
|
|
quant_config: QuantizationConfig | None = None,
|
|
bias: bool = False,
|
|
reduce_results: bool = True,
|
|
is_sequence_parallel: bool = False,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.up_proj = ColumnParallelLinear(
|
|
input_size=config.hidden_size,
|
|
output_size=intermediate_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
disable_tp=is_sequence_parallel,
|
|
prefix=f"{prefix}.up_proj",
|
|
)
|
|
self.down_proj = RowParallelLinear(
|
|
input_size=intermediate_size,
|
|
output_size=config.hidden_size,
|
|
bias=bias,
|
|
quant_config=quant_config,
|
|
reduce_results=reduce_results,
|
|
disable_tp=is_sequence_parallel,
|
|
prefix=f"{prefix}.down_proj",
|
|
)
|
|
self.act_fn = ReLUSquaredActivation()
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x, _ = self.up_proj(x)
|
|
x = self.act_fn(x)
|
|
x, _ = self.down_proj(x)
|
|
return x
|
|
|
|
|
|
class NemotronHMoE(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: NemotronHConfig,
|
|
quant_config: QuantizationConfig | None = None,
|
|
parallel_config: ParallelConfig | None = None,
|
|
prefix: str = "",
|
|
):
|
|
super().__init__()
|
|
self.tp_size = get_tensor_model_parallel_world_size()
|
|
self.routed_scaling_factor = config.routed_scaling_factor
|
|
|
|
self.ep_group = get_ep_group().device_group
|
|
self.ep_rank = self.ep_group.rank()
|
|
self.ep_size = self.ep_group.size()
|
|
self.n_routed_experts: int = config.n_routed_experts
|
|
self.n_shared_experts: int = config.n_shared_experts
|
|
|
|
self.is_sequence_parallel = parallel_config.use_sequence_parallel_moe
|
|
|
|
self.gate = ReplicatedLinear(
|
|
config.hidden_size,
|
|
config.n_routed_experts,
|
|
bias=False,
|
|
params_dtype=torch.float32,
|
|
quant_config=None,
|
|
prefix=f"{prefix}.gate",
|
|
)
|
|
|
|
self.gate.e_score_correction_bias = nn.Parameter(
|
|
torch.empty(config.n_routed_experts, dtype=torch.float32)
|
|
)
|
|
# Load balancing settings.
|
|
self.enable_eplb = parallel_config.enable_eplb
|
|
|
|
self.n_redundant_experts = parallel_config.eplb_config.num_redundant_experts # noqa: E501
|
|
self.n_logical_experts = self.n_routed_experts
|
|
self.n_physical_experts = self.n_logical_experts + self.n_redundant_experts
|
|
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
|
|
|
|
self.physical_expert_start = self.ep_rank * self.n_local_physical_experts
|
|
self.physical_expert_end = (
|
|
self.physical_expert_start + self.n_local_physical_experts
|
|
)
|
|
|
|
if config.n_shared_experts is None or config.n_shared_experts == 0:
|
|
self.shared_experts = None
|
|
else:
|
|
intermediate_size = (
|
|
config.moe_shared_expert_intermediate_size * config.n_shared_experts
|
|
)
|
|
|
|
self.shared_experts = NemotronHMLP(
|
|
config=config,
|
|
intermediate_size=intermediate_size,
|
|
quant_config=quant_config,
|
|
reduce_results=False,
|
|
is_sequence_parallel=self.is_sequence_parallel,
|
|
prefix=f"{prefix}.shared_experts",
|
|
)
|
|
|
|
self.experts = SharedFusedMoE(
|
|
shared_experts=self.shared_experts,
|
|
num_experts=config.n_routed_experts,
|
|
top_k=config.num_experts_per_tok,
|
|
hidden_size=config.hidden_size,
|
|
intermediate_size=config.moe_intermediate_size,
|
|
reduce_results=False,
|
|
renormalize=config.norm_topk_prob,
|
|
quant_config=quant_config,
|
|
use_grouped_topk=True,
|
|
num_expert_group=config.n_group,
|
|
topk_group=config.topk_group,
|
|
prefix=f"{prefix}.experts",
|
|
scoring_func="sigmoid",
|
|
e_score_correction_bias=self.gate.e_score_correction_bias,
|
|
activation=activation_without_mul(config.mlp_hidden_act),
|
|
is_act_and_mul=False, # non-gated MoE
|
|
enable_eplb=self.enable_eplb,
|
|
num_redundant_experts=self.n_redundant_experts,
|
|
is_sequence_parallel=self.is_sequence_parallel,
|
|
)
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
num_tokens, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
|
|
if self.is_sequence_parallel:
|
|
hidden_states = sequence_parallel_chunk(hidden_states)
|
|
|
|
# router_logits: (num_tokens, n_experts)
|
|
router_logits, _ = self.gate(hidden_states.to(dtype=torch.float32))
|
|
|
|
fused_moe_out = self.experts(
|
|
hidden_states=hidden_states, router_logits=router_logits
|
|
)
|
|
|
|
shared_output, final_hidden_states = fused_moe_out
|
|
|
|
# Fix FP16 overflow
|
|
# See DeepseekV2DecoderLayer for more details.
|
|
if hidden_states.dtype != torch.float16:
|
|
final_hidden_states *= self.routed_scaling_factor
|
|
elif self.shared_experts is not None:
|
|
assert shared_output is not None
|
|
shared_output *= 1.0 / self.routed_scaling_factor
|
|
|
|
if self.shared_experts is not None:
|
|
assert shared_output is not None
|
|
final_hidden_states += shared_output
|
|
|
|
if self.is_sequence_parallel:
|
|
final_hidden_states = tensor_model_parallel_all_gather(
|
|
final_hidden_states, 0
|
|
)
|
|
final_hidden_states = final_hidden_states[:num_tokens]
|
|
elif self.tp_size > 1:
|
|
final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel(
|
|
final_hidden_states
|
|
)
|
|
|
|
return final_hidden_states.view(num_tokens, hidden_dim)
|
|
|
|
|
|
class NemotronHMLPDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: NemotronHConfig,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
parallel_config: ParallelConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
hybrid_override_pattern = config.hybrid_override_pattern
|
|
mlp_index = hybrid_override_pattern[: layer_idx + 1].count("-") - 1
|
|
if isinstance(config.intermediate_size, list):
|
|
if len(config.intermediate_size) == 1:
|
|
intermediate_size = config.intermediate_size[0]
|
|
else:
|
|
intermediate_size = config.intermediate_size[mlp_index]
|
|
else:
|
|
intermediate_size = config.intermediate_size
|
|
|
|
self.mixer = NemotronHMLP(
|
|
config,
|
|
intermediate_size=intermediate_size,
|
|
quant_config=quant_config,
|
|
bias=config.mlp_bias,
|
|
prefix=f"{prefix}.mixer",
|
|
)
|
|
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
):
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.norm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.norm(hidden_states, residual)
|
|
|
|
hidden_states = self.mixer(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class NemotronHMoEDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: NemotronHConfig,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
parallel_config: ParallelConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
|
|
self.mixer = NemotronHMoE(
|
|
config,
|
|
quant_config=quant_config,
|
|
parallel_config=parallel_config,
|
|
prefix=f"{prefix}.mixer",
|
|
)
|
|
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
):
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.norm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.norm(hidden_states, residual)
|
|
|
|
hidden_states = self.mixer(hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
class NemotronHMambaDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: NemotronHConfig,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
parallel_config: ParallelConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.config = config
|
|
self.mixer = MambaMixer2(
|
|
hidden_size=config.hidden_size,
|
|
ssm_state_size=config.ssm_state_size,
|
|
conv_kernel_size=config.conv_kernel,
|
|
intermediate_size=config.mamba_num_heads * config.mamba_head_dim,
|
|
use_conv_bias=config.use_conv_bias,
|
|
use_bias=config.use_bias,
|
|
n_groups=config.n_groups,
|
|
num_heads=config.mamba_num_heads,
|
|
head_dim=config.mamba_head_dim,
|
|
rms_norm_eps=config.layer_norm_epsilon,
|
|
activation=config.mamba_hidden_act,
|
|
model_config=model_config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.mixer",
|
|
)
|
|
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
):
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.norm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.norm(hidden_states, residual)
|
|
|
|
output = torch.empty_like(hidden_states)
|
|
self.mixer(hidden_states, output)
|
|
return output, residual
|
|
|
|
|
|
class NemotronHAttention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: NemotronHConfig,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
self.hidden_size = config.hidden_size
|
|
tp_size = get_tensor_model_parallel_world_size()
|
|
self.total_num_heads = config.num_attention_heads
|
|
assert self.total_num_heads % tp_size == 0
|
|
self.num_heads = self.total_num_heads // tp_size
|
|
self.total_num_kv_heads = config.num_key_value_heads
|
|
if self.total_num_kv_heads >= tp_size:
|
|
# Number of KV heads is greater than TP size, so we partition
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert self.total_num_kv_heads % tp_size == 0
|
|
else:
|
|
# Number of KV heads is less than TP size, so we replicate
|
|
# the KV heads across multiple tensor parallel GPUs.
|
|
assert tp_size % self.total_num_kv_heads == 0
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
|
|
if hasattr(config, "head_dim") and config.head_dim is not None:
|
|
self.head_dim = config.head_dim
|
|
else:
|
|
self.head_dim = config.hidden_size // self.total_num_heads
|
|
self.q_size = self.num_heads * self.head_dim
|
|
self.kv_size = self.num_kv_heads * self.head_dim
|
|
self.scaling = self.head_dim**-0.5
|
|
|
|
self.qkv_proj = QKVParallelLinear(
|
|
config.hidden_size,
|
|
self.head_dim,
|
|
self.total_num_heads,
|
|
self.total_num_kv_heads,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.qkv_proj",
|
|
)
|
|
self.o_proj = RowParallelLinear(
|
|
self.total_num_heads * self.head_dim,
|
|
config.hidden_size,
|
|
bias=False,
|
|
quant_config=quant_config,
|
|
prefix=f"{prefix}.o_proj",
|
|
)
|
|
|
|
self.attn = Attention(
|
|
self.num_heads,
|
|
self.head_dim,
|
|
self.scaling,
|
|
num_kv_heads=self.num_kv_heads,
|
|
cache_config=cache_config,
|
|
prefix=f"{prefix}.attn",
|
|
)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
**kwargs,
|
|
) -> torch.Tensor:
|
|
qkv, _ = self.qkv_proj(hidden_states)
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
|
|
attn_output = self.attn(q, k, v)
|
|
output, _ = self.o_proj(attn_output)
|
|
return output
|
|
|
|
|
|
class NemotronHAttentionDecoderLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
config: NemotronHConfig,
|
|
layer_idx: int,
|
|
model_config: ModelConfig | None = None,
|
|
cache_config: CacheConfig | None = None,
|
|
quant_config: QuantizationConfig | None = None,
|
|
parallel_config: ParallelConfig | None = None,
|
|
prefix: str = "",
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.mixer = NemotronHAttention(
|
|
config,
|
|
layer_idx,
|
|
model_config,
|
|
cache_config,
|
|
quant_config,
|
|
prefix=f"{prefix}.mixer",
|
|
)
|
|
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
def forward(
|
|
self,
|
|
positions: torch.Tensor,
|
|
hidden_states: torch.Tensor,
|
|
residual: torch.Tensor | None,
|
|
**kwargs,
|
|
):
|
|
if residual is None:
|
|
residual = hidden_states
|
|
hidden_states = self.norm(hidden_states)
|
|
else:
|
|
hidden_states, residual = self.norm(hidden_states, residual)
|
|
|
|
hidden_states = self.mixer(hidden_states=hidden_states)
|
|
return hidden_states, residual
|
|
|
|
|
|
ALL_DECODER_LAYER_TYPES = {
|
|
"M": NemotronHMambaDecoderLayer,
|
|
"-": NemotronHMLPDecoderLayer,
|
|
"*": NemotronHAttentionDecoderLayer,
|
|
"E": NemotronHMoEDecoderLayer,
|
|
}
|
|
|
|
|
|
@support_torch_compile
|
|
class NemotronHModel(nn.Module):
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
super().__init__()
|
|
|
|
config: NemotronHConfig = vllm_config.model_config.hf_config
|
|
model_config = vllm_config.model_config
|
|
cache_config = vllm_config.cache_config
|
|
quant_config = vllm_config.quant_config
|
|
parallel_config = vllm_config.parallel_config
|
|
|
|
self.config = config
|
|
|
|
self.vocab_size = config.vocab_size
|
|
|
|
self.embed_tokens = VocabParallelEmbedding(
|
|
self.vocab_size,
|
|
config.hidden_size,
|
|
)
|
|
|
|
self.has_moe = "E" in config.hybrid_override_pattern
|
|
|
|
def get_layer(prefix: str):
|
|
layer_idx = int(prefix.rsplit(".", 1)[1])
|
|
layer_class = ALL_DECODER_LAYER_TYPES[
|
|
config.hybrid_override_pattern[layer_idx]
|
|
]
|
|
return layer_class(
|
|
config=config,
|
|
layer_idx=layer_idx,
|
|
model_config=model_config,
|
|
cache_config=cache_config,
|
|
quant_config=quant_config,
|
|
parallel_config=parallel_config,
|
|
prefix=prefix,
|
|
)
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers(
|
|
len(config.hybrid_override_pattern), get_layer, prefix=f"{prefix}.layers"
|
|
)
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory(
|
|
["hidden_states", "residual"], config.hidden_size
|
|
)
|
|
|
|
self.norm_f = RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.embed_tokens(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
) -> torch.Tensor | IntermediateTensors:
|
|
if get_pp_group().is_first_rank:
|
|
if inputs_embeds is not None:
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
hidden_states = self.embed_input_ids(input_ids)
|
|
residual = None
|
|
else:
|
|
assert intermediate_tensors is not None
|
|
hidden_states = intermediate_tensors["hidden_states"]
|
|
residual = intermediate_tensors["residual"]
|
|
|
|
for layer in islice(self.layers, self.start_layer, self.end_layer):
|
|
hidden_states, residual = layer(
|
|
positions=positions,
|
|
hidden_states=hidden_states,
|
|
residual=residual,
|
|
)
|
|
|
|
if not get_pp_group().is_last_rank:
|
|
return IntermediateTensors(
|
|
{"hidden_states": hidden_states, "residual": residual}
|
|
)
|
|
hidden_states, _ = self.norm_f(hidden_states, residual)
|
|
return hidden_states
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
stacked_params_mapping = [
|
|
# (param_name, shard_name, shard_id)
|
|
("qkv_proj", "q_proj", "q"),
|
|
("qkv_proj", "k_proj", "k"),
|
|
("qkv_proj", "v_proj", "v"),
|
|
]
|
|
|
|
if self.has_moe:
|
|
# (param_name, weight_name, expert_id, shard_id)
|
|
expert_params_mapping = FusedMoE.make_expert_params_mapping(
|
|
# - FusedMoe.w1 (aka gate_proj) should be up_proj since that's
|
|
# what the activation is applied to
|
|
# - FusedMoe.w3 (aka up_proj) should be ignored since we're
|
|
# using non-gated MoE
|
|
ckpt_gate_proj_name="up_proj",
|
|
ckpt_down_proj_name="down_proj",
|
|
ckpt_up_proj_name="",
|
|
num_experts=self.config.n_routed_experts,
|
|
num_redundant_experts=getattr(self, "num_redundant_experts", 0),
|
|
)
|
|
else:
|
|
expert_params_mapping = []
|
|
|
|
params_dict = dict(self.named_parameters())
|
|
loaded_params: set[str] = set()
|
|
for name, loaded_weight in weights:
|
|
if "scale" in name:
|
|
# Remapping the name of FP8 kv-scale.
|
|
name = maybe_remap_kv_scale_name(name, params_dict)
|
|
if name is None:
|
|
continue
|
|
|
|
# load stacked params
|
|
for param_name, weight_name, shard_id in stacked_params_mapping:
|
|
if weight_name not in name:
|
|
continue
|
|
name = name.replace(weight_name, param_name)
|
|
# Skip loading extra bias for GPTQ models.
|
|
if name.endswith(".bias") and name not in params_dict:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = param.weight_loader
|
|
weight_loader(param, loaded_weight, shard_id)
|
|
break
|
|
|
|
# load other params
|
|
else:
|
|
is_expert_weight = False
|
|
for mapping in expert_params_mapping:
|
|
param_name, weight_name, expert_id, shard_id = mapping
|
|
if weight_name not in name:
|
|
continue
|
|
|
|
# Anyway, this is an expert weight and should not be
|
|
# attempted to load as other weights later
|
|
is_expert_weight = True
|
|
|
|
# Do not modify `name` since the loop may continue here
|
|
# Instead, create a new variable
|
|
name_mapped = name.replace(weight_name, param_name)
|
|
|
|
if is_pp_missing_parameter(name_mapped, self):
|
|
continue
|
|
param = params_dict[name_mapped]
|
|
# We should ask the weight loader to return success or not
|
|
# here since otherwise we may skip experts with other
|
|
# available replicas.
|
|
weight_loader = typing.cast(
|
|
Callable[..., bool], param.weight_loader
|
|
)
|
|
success = weight_loader(
|
|
param,
|
|
loaded_weight,
|
|
name_mapped,
|
|
shard_id=shard_id,
|
|
expert_id=expert_id,
|
|
return_success=True,
|
|
)
|
|
if success:
|
|
name = name_mapped
|
|
break
|
|
else:
|
|
if is_expert_weight:
|
|
continue
|
|
|
|
if is_pp_missing_parameter(name, self):
|
|
continue
|
|
|
|
param = params_dict[name]
|
|
weight_loader = getattr(
|
|
param, "weight_loader", default_weight_loader
|
|
)
|
|
weight_loader(param, loaded_weight)
|
|
|
|
loaded_params.add(name)
|
|
return loaded_params
|
|
|
|
|
|
class NemotronHForCausalLM(
|
|
nn.Module,
|
|
HasInnerState,
|
|
SupportsLoRA,
|
|
SupportsPP,
|
|
IsHybrid,
|
|
SupportsQuant,
|
|
MixtureOfExperts,
|
|
SupportsMambaPrefixCaching,
|
|
):
|
|
hf_to_vllm_mapper = WeightsMapper(
|
|
orig_to_new_prefix={"backbone": "model"},
|
|
orig_to_new_substr={"A_log": "A", "embeddings": "embed_tokens"},
|
|
)
|
|
|
|
packed_modules_mapping = {
|
|
"qkv_proj": [
|
|
"q_proj",
|
|
"k_proj",
|
|
"v_proj",
|
|
],
|
|
}
|
|
|
|
# LoRA specific attributes
|
|
embedding_modules = {
|
|
"embed_tokens": "input_embeddings",
|
|
"lm_head": "output_embeddings",
|
|
}
|
|
embedding_padding_modules = ["lm_head"]
|
|
|
|
@classmethod
|
|
def get_mamba_state_dtype_from_config(
|
|
cls,
|
|
vllm_config: "VllmConfig",
|
|
) -> tuple[torch.dtype, torch.dtype]:
|
|
return MambaStateDtypeCalculator.mamba2_state_dtype(
|
|
vllm_config.model_config.dtype,
|
|
vllm_config.cache_config.mamba_cache_dtype,
|
|
vllm_config.cache_config.mamba_ssm_cache_dtype,
|
|
)
|
|
|
|
@classmethod
|
|
def get_mamba_state_shape_from_config(
|
|
cls,
|
|
vllm_config: "VllmConfig",
|
|
) -> tuple[tuple[int, int], tuple[int, int, int]]:
|
|
"""Calculate shapes for Mamba's convolutional and state caches.
|
|
|
|
Args:
|
|
vllm_config: vLLM config
|
|
|
|
Returns:
|
|
Tuple containing:
|
|
- conv_state_shape: Shape for convolutional state cache
|
|
- temporal_state_shape: Shape for state space model cache
|
|
"""
|
|
parallel_config = vllm_config.parallel_config
|
|
hf_config = vllm_config.model_config.hf_config
|
|
intermediate_size = hf_config.mamba_num_heads * hf_config.mamba_head_dim
|
|
|
|
return MambaStateShapeCalculator.mamba2_state_shape(
|
|
intermediate_size=intermediate_size,
|
|
tp_world_size=parallel_config.tensor_parallel_size,
|
|
n_groups=hf_config.n_groups,
|
|
num_heads=hf_config.mamba_num_heads,
|
|
head_dim=hf_config.mamba_head_dim,
|
|
state_size=hf_config.ssm_state_size,
|
|
conv_kernel=hf_config.conv_kernel,
|
|
)
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
|
|
config = vllm_config.model_config.hf_config
|
|
self.vllm_config = vllm_config
|
|
self.model_config = vllm_config.model_config
|
|
|
|
scheduler_config = vllm_config.scheduler_config
|
|
|
|
self.quant_config = vllm_config.quant_config
|
|
|
|
super().__init__()
|
|
self.config = config
|
|
self.scheduler_config = scheduler_config
|
|
self.model = NemotronHModel(
|
|
vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")
|
|
)
|
|
|
|
self.lm_head = ParallelLMHead(
|
|
config.vocab_size,
|
|
config.hidden_size,
|
|
prefix=maybe_prefix(prefix, "lm_head"),
|
|
)
|
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size)
|
|
|
|
self.make_empty_intermediate_tensors = (
|
|
self.model.make_empty_intermediate_tensors
|
|
)
|
|
|
|
# Set MoE hyperparameters
|
|
if self.model.has_moe:
|
|
self.expert_weights = []
|
|
self.num_expert_groups = config.n_group
|
|
|
|
self.moe_layers = []
|
|
example_moe = None
|
|
for layer in self.model.layers:
|
|
if isinstance(layer, NemotronHMoEDecoderLayer):
|
|
# Pick last one layer since the first ones
|
|
# may be dense layers.
|
|
example_moe = layer.mixer
|
|
self.moe_layers.append(layer.mixer.experts)
|
|
|
|
self.num_moe_layers = len(self.moe_layers)
|
|
self.num_logical_experts = example_moe.n_logical_experts
|
|
self.num_physical_experts = example_moe.n_physical_experts
|
|
self.num_local_physical_experts = example_moe.n_local_physical_experts # noqa: E501
|
|
self.num_routed_experts = example_moe.n_routed_experts
|
|
self.num_shared_experts = example_moe.n_shared_experts
|
|
self.num_redundant_experts = example_moe.n_redundant_experts
|
|
|
|
def update_physical_experts_metadata(
|
|
self,
|
|
num_physical_experts: int,
|
|
num_local_physical_experts: int,
|
|
) -> None:
|
|
assert self.num_local_physical_experts == num_local_physical_experts
|
|
self.num_physical_experts = num_physical_experts
|
|
self.num_local_physical_experts = num_local_physical_experts
|
|
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
|
|
for layer in self.model.layers:
|
|
if isinstance(layer, NemotronHMoEDecoderLayer):
|
|
moe = layer.mixer
|
|
moe.n_local_physical_experts = num_local_physical_experts
|
|
moe.n_physical_experts = num_physical_experts
|
|
moe.n_redundant_experts = self.num_redundant_experts
|
|
moe.experts.update_expert_map()
|
|
|
|
def embed_input_ids(self, input_ids: torch.Tensor) -> torch.Tensor:
|
|
return self.model.embed_input_ids(input_ids)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.Tensor,
|
|
positions: torch.Tensor,
|
|
intermediate_tensors: IntermediateTensors | None = None,
|
|
inputs_embeds: torch.Tensor | None = None,
|
|
**kwargs,
|
|
):
|
|
hidden_states = self.model(
|
|
input_ids, positions, intermediate_tensors, inputs_embeds
|
|
)
|
|
|
|
return hidden_states
|
|
|
|
def compute_logits(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
) -> torch.Tensor | None:
|
|
logits = self.logits_processor(self.lm_head, hidden_states)
|
|
return logits
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
|
|
loader = AutoWeightsLoader(self)
|
|
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
|