Michael Goin c3aea10dc8
[Perf] Use upstream CUTLASS for SM90 Block FP8 kernel (#23280)
Signed-off-by: mgoin <mgoin64@gmail.com>
Co-authored-by: Wentao Ye <44945378+yewentao256@users.noreply.github.com>
2025-09-11 15:43:14 -07:00

796 lines
26 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from https://github.com/sgl-project/sglang/pull/2575
import functools
import json
import os
from collections.abc import Sequence
from typing import Any, Callable, Optional, Union
import torch
import vllm.envs as envs
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.quantization.utils.quant_utils import (
group_broadcast)
from vllm.model_executor.layers.quantization.utils.w8a8_utils import (
CUTLASS_BLOCK_FP8_SUPPORTED)
from vllm.platforms import current_platform
from vllm.triton_utils import tl, triton
from vllm.utils import cdiv, direct_register_custom_op
from vllm.utils.deep_gemm import (is_deep_gemm_e8m0_used,
should_use_deepgemm_for_fp8_linear)
logger = init_logger(__name__)
def is_fp8(x: Union[torch.dtype, torch.Tensor]) -> bool:
if isinstance(x, torch.Tensor):
x = x.dtype
return x == torch.float8_e4m3fn or x == torch.float8_e4m3fnuz
def cutlass_scaled_mm(
A: torch.Tensor,
B: torch.Tensor,
As: torch.Tensor,
Bs: torch.Tensor,
block_size: list[int],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
return ops.cutlass_scaled_mm(
A,
B.T,
out_dtype=output_dtype,
scale_a=As,
# SM90 block FP8 requires row-major scale_b, which we do ahead of time
scale_b=Bs if block_size is not None
and current_platform.is_device_capability(90) else Bs.T)
def rocm_aiter_gemm_w8a8_blockscale_impl(
A: torch.Tensor,
B: torch.Tensor,
As: torch.Tensor,
Bs: torch.Tensor,
block_size: list[int],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
import aiter as rocm_aiter
return rocm_aiter.gemm_a8w8_blockscale(A, B, As, Bs, dtype=output_dtype)
def rocm_aiter_gemm_w8a8_blockscale_fake(
A: torch.Tensor,
B: torch.Tensor,
As: torch.Tensor,
Bs: torch.Tensor,
block_size: list[int],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
m = A.shape[0]
n = B.shape[0]
Y = torch.empty(m, n, dtype=output_dtype, device=A.device)
return Y
if current_platform.is_rocm():
direct_register_custom_op(
op_name="rocm_aiter_gemm_w8a8_blockscale",
op_func=rocm_aiter_gemm_w8a8_blockscale_impl,
mutates_args=[],
fake_impl=rocm_aiter_gemm_w8a8_blockscale_fake,
dispatch_key=current_platform.dispatch_key,
)
if (envs.VLLM_ROCM_USE_AITER and envs.VLLM_ROCM_USE_AITER_LINEAR
and current_platform.is_fp8_fnuz()):
import aiter as rocm_aiter
from aiter import get_hip_quant
aiter_per1x128_quant = get_hip_quant(rocm_aiter.QuantType.per_1x128)
def dispatch_w8a8_blockscale_func(
use_cutlass: bool, use_aiter_and_is_supported: bool
) -> Callable[[
torch.Tensor,
torch.Tensor,
torch.Tensor,
torch.Tensor,
list[int],
torch.dtype,
], torch.Tensor]:
if use_cutlass:
return cutlass_scaled_mm
if (use_aiter_and_is_supported):
return torch.ops.vllm.rocm_aiter_gemm_w8a8_blockscale
return w8a8_block_fp8_matmul
# TODO fix ROCm->Triton custom path:
# https://github.com/vllm-project/vllm/issues/14397
def apply_w8a8_block_fp8_linear(
input: torch.Tensor,
weight: torch.Tensor,
block_size: list[int],
weight_scale: torch.Tensor,
input_scale: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
cutlass_block_fp8_supported: bool = CUTLASS_BLOCK_FP8_SUPPORTED,
use_aiter_and_is_supported: bool = False,
) -> torch.Tensor:
assert input_scale is None
# View input as 2D matrix for fp8 methods
input_2d = input.view(-1, input.shape[-1])
output_shape = [*input.shape[:-1], weight.shape[0]]
output_dtype = input.dtype
if should_use_deepgemm_for_fp8_linear(output_dtype, weight):
input_2d = input.view(-1, input.shape[-1])
output_shape = [*input.shape[:-1], weight.shape[0]]
q_input, x_scale = per_token_group_quant_fp8(
input_2d,
block_size[1],
column_major_scales=True,
)
# ensure DeepGEMM-backed custom op is registered before use
import vllm.model_executor.layers.quantization.deepgemm # noqa: F401
output = torch.ops.vllm.w8a8_block_fp8_matmul_deepgemm(
q_input,
weight,
x_scale,
weight_scale,
block_size,
output_dtype=output_dtype)
if bias is not None:
output += bias
return output.to(dtype=output_dtype).view(*output_shape)
w8a8_blockscale_func = dispatch_w8a8_blockscale_func(
cutlass_block_fp8_supported, use_aiter_and_is_supported)
if cutlass_block_fp8_supported:
num_pad = 0
if current_platform.is_device_capability(90):
# pad first dimension to be divisible by 4 due to
# cutlass blockwise gemm limitation for hopper
num_pad = 4 - (input_2d.shape[0] % 4)
if num_pad > 0:
input_2d = torch.nn.functional.pad(input_2d,
(0, 0, 0, num_pad),
"constant", 0)
q_input, x_scale = per_token_group_quant_fp8(input_2d,
block_size[1],
column_major_scales=True)
output = w8a8_blockscale_func(q_input, weight, x_scale, weight_scale,
block_size, input.dtype)
if num_pad > 0:
output = output[:-num_pad]
else:
if use_aiter_and_is_supported:
q_input, x_scale = aiter_per1x128_quant(
input_2d.contiguous(), quant_dtype=rocm_aiter.dtypes.fp8)
else:
q_input, x_scale = per_token_group_quant_fp8(
input_2d, block_size[1], column_major_scales=False)
output = w8a8_blockscale_func(q_input, weight, x_scale, weight_scale,
block_size, input.dtype)
if bias is not None:
output = output + bias
return output.to(dtype=input.dtype).view(*output_shape)
def apply_w8a8_block_fp8_linear_fake(
input: torch.Tensor,
weight: torch.Tensor,
block_size: list[int],
weight_scale: torch.Tensor,
input_scale: Optional[torch.Tensor] = None,
bias: Optional[torch.Tensor] = None,
cutlass_block_fp8_supported: bool = CUTLASS_BLOCK_FP8_SUPPORTED,
use_aiter_and_is_supported: bool = False,
) -> torch.Tensor:
output_shape = [*input.shape[:-1], weight.shape[0]]
return torch.empty(output_shape, dtype=input.dtype, device=input.device)
if not current_platform.is_cpu():
direct_register_custom_op(
op_name="apply_w8a8_block_fp8_linear",
op_func=apply_w8a8_block_fp8_linear,
mutates_args=[],
fake_impl=apply_w8a8_block_fp8_linear_fake,
)
def input_to_float8(
x: torch.Tensor,
dtype: Optional[torch.dtype] = None
) -> tuple[torch.Tensor, torch.Tensor]:
"""This function quantizes input values to float8 values "
"with tensor-wise quantization."""
dtype = current_platform.fp8_dtype() if dtype is None else dtype
finfo = torch.finfo(dtype)
min_val, max_val = x.aminmax()
amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12)
scale = finfo.max / amax
x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max)
return x_scl_sat.to(dtype).contiguous(), scale.float().reciprocal()
def block_quant_to_tensor_quant(
x_q_block: torch.Tensor,
x_s: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""This function converts block-wise quantization to tensor-wise
quantization. The inputs are block-wise quantization tensor `x_q_block`,
block-wise quantization scale and the block size.
The outputs are tensor-wise quantization tensor and tensor-wise
quantization scale. Note only float8 is supported for now.
"""
x_dq_block = group_broadcast(x_q_block, x_s)
x_q_tensor, scale = input_to_float8(x_dq_block, dtype=x_q_block.dtype)
return x_q_tensor, scale
@triton.jit
def _per_token_group_quant_fp8(
# Pointers to inputs and output
y_ptr,
y_q_ptr,
y_s_ptr,
group_size,
# Num columns of y
y_num_columns,
y_row_stride,
# Avoid to divide zero
eps,
# Information for float8
fp8_min,
fp8_max,
use_ue8m0: tl.constexpr,
# Meta-parameters
BLOCK: tl.constexpr,
):
"""A Triton-accelerated function to perform per-token-group
quantization on a tensor.
This function converts the tensor values into float8 values.
"""
groups_per_row = y_num_columns // group_size
# Map the program id to the row of X and Y it should compute.
g_id = tl.program_id(0)
row = g_id // groups_per_row
row_g_id = g_id % groups_per_row
# Ensure offset calculations use int64 to prevent overflow
y_ptr_offset = (row.to(tl.int64) * y_row_stride) + (row_g_id.to(tl.int64) *
group_size)
y_ptr += y_ptr_offset
y_q_ptr_offset = g_id.to(tl.int64) * group_size
y_q_ptr += y_q_ptr_offset
y_s_ptr += g_id
cols = tl.arange(0, BLOCK) # N <= BLOCK
mask = cols < group_size
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
# Quant
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
scale_raw = _absmax / fp8_max
y_s = tl.math.exp2(tl.ceil(tl.log2(scale_raw))) if use_ue8m0 else scale_raw
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
tl.store(y_q_ptr + cols, y_q, mask=mask)
tl.store(y_s_ptr, y_s)
@triton.jit
def _per_token_group_quant_fp8_colmajor(
# Pointers to inputs and output
y_ptr,
y_q_ptr,
y_s_ptr,
group_size,
# Num columns of y
y_num_columns,
y_row_stride,
# Stride from one column to the next of y_s
y_s_col_stride,
# Avoid to divide zero
eps,
# Information for float8
fp8_min,
fp8_max,
use_ue8m0: tl.constexpr,
# Meta-parameters
BLOCK: tl.constexpr,
):
"""A Triton-accelerated function to perform per-token-group
quantization on a tensor.
This function converts the tensor values into float8 values.
"""
groups_per_row = y_num_columns // group_size
# Map the program id to the row of X and Y it should compute.
g_id = tl.program_id(0)
row = g_id // groups_per_row
row_g_id = g_id % groups_per_row
# Ensure offset calculations use int64 to prevent overflow
y_ptr_offset = (row.to(tl.int64) * y_row_stride) + (row_g_id.to(tl.int64) *
group_size)
y_ptr += y_ptr_offset
y_q_ptr_offset = g_id.to(tl.int64) * group_size
y_q_ptr += y_q_ptr_offset
# Convert g_id the flattened block coordinate to 2D so we can index
# into the output y_scales matrix
blocks_per_row = y_num_columns // group_size
scale_col = g_id % blocks_per_row
scale_row = g_id // blocks_per_row
# Ensure offset calculation uses int64 for y_s_ptr
y_s_ptr_offset = (scale_col.to(tl.int64) * y_s_col_stride) + scale_row.to(
tl.int64)
y_s_ptr += y_s_ptr_offset
cols = tl.arange(0, BLOCK) # group_size <= BLOCK
mask = cols < group_size
y = tl.load(y_ptr + cols, mask=mask, other=0.0).to(tl.float32)
# Quant
_absmax = tl.maximum(tl.max(tl.abs(y)), eps)
scale_raw = _absmax / fp8_max
y_s = tl.math.exp2(tl.ceil(tl.log2(scale_raw))) if use_ue8m0 else scale_raw
y_q = tl.clamp(y / y_s, fp8_min, fp8_max).to(y_q_ptr.dtype.element_ty)
tl.store(y_q_ptr + cols, y_q, mask=mask)
tl.store(y_s_ptr, y_s)
def per_token_group_quant_fp8(
x: torch.Tensor,
group_size: int,
eps: float = 1e-10,
dtype: Optional[torch.dtype] = None,
column_major_scales: bool = False,
out_q: Optional[torch.Tensor] = None,
use_ue8m0: Optional[bool] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Function to perform per-token-group quantization on an input tensor `x`.
It converts the tensor values into signed float8 values and returns the
quantized tensor along with the scaling factor used for quantization.
Args:
x: The input tensor with ndim >= 2.
group_size: The group size used for quantization.
eps: The minimum to avoid dividing zero.
dtype: The dype of output tensor. Note that only `torch.float8_e4m3fn`
is supported for now.
column_major_scales: Outputs scales in column major.
out_q: Optional output tensor. If not provided, function will create.
Returns:
tuple[torch.Tensor, torch.Tensor]: The quantized tensor and the
scaling factor.
"""
if use_ue8m0 is None:
use_ue8m0 = is_deep_gemm_e8m0_used()
dtype = current_platform.fp8_dtype() if dtype is None else dtype
assert (x.shape[-1] % group_size == 0), (
f"the last dimension of `x` {x.shape[-1]} must be divisible "
f"by `group_size` {group_size}")
assert x.stride(-1) == 1, "`x` groups must be contiguous"
finfo = torch.finfo(dtype)
fp8_min = finfo.min
fp8_max = finfo.max
assert out_q is None or out_q.shape == x.shape
x_q = out_q
if x_q is None:
x_q = torch.empty_like(x, device=x.device, dtype=dtype)
# Allocate the scale tensor in either row- or column-major format.
if column_major_scales:
shape = (x.shape[-1] // group_size, ) + x.shape[:-1]
x_s = torch.empty(shape, device=x.device,
dtype=torch.float32).permute(-1, -2)
else:
shape = x.shape[:-1] + (x.shape[-1] // group_size, )
x_s = torch.empty(shape, device=x.device, dtype=torch.float32)
# prefer CUDA kernel if available
if current_platform.is_cuda() and x.is_contiguous():
torch.ops._C.per_token_group_fp8_quant(x, x_q, x_s, group_size, eps,
fp8_min, fp8_max, use_ue8m0)
return x_q, x_s
# TRITON FALLBACK
M = x.numel() // group_size
N = group_size
BLOCK = triton.next_power_of_2(N)
# heuristics for number of warps
num_warps = min(max(BLOCK // 256, 1), 8)
num_stages = 1
if column_major_scales:
_per_token_group_quant_fp8_colmajor[(M, )](
x,
x_q,
x_s,
group_size,
x.shape[1],
x.stride(0),
x_s.stride(1),
eps,
fp8_min=fp8_min,
fp8_max=fp8_max,
use_ue8m0=use_ue8m0,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=num_stages,
)
else:
_per_token_group_quant_fp8[(M, )](
x,
x_q,
x_s,
group_size,
x.shape[1],
x.stride(0),
eps,
fp8_min=fp8_min,
fp8_max=fp8_max,
use_ue8m0=use_ue8m0,
BLOCK=BLOCK,
num_warps=num_warps,
num_stages=num_stages,
)
return x_q, x_s
@triton.jit
def _w8a8_block_fp8_matmul(
# Pointers to inputs and output
A,
B,
C,
As,
Bs,
# Shape for matmul
M,
N,
K,
# Block size for block-wise quantization
group_n,
group_k,
# Stride for inputs and output
stride_am,
stride_ak,
stride_bk,
stride_bn,
stride_cm,
stride_cn,
stride_As_m,
stride_As_k,
stride_Bs_k,
stride_Bs_n,
# Meta-parameters
BLOCK_SIZE_M: tl.constexpr,
BLOCK_SIZE_N: tl.constexpr,
BLOCK_SIZE_K: tl.constexpr,
GROUP_SIZE_M: tl.constexpr,
):
"""Triton-accelerated function used to perform linear operations (dot
product) on input tensors `A` and `B` with block-wise quantization, and
store the result in output tensor `C`.
"""
pid = tl.program_id(axis=0)
num_pid_m = tl.cdiv(M, BLOCK_SIZE_M)
num_pid_n = tl.cdiv(N, BLOCK_SIZE_N)
num_pid_in_group = GROUP_SIZE_M * num_pid_n
group_id = pid // num_pid_in_group
first_pid_m = group_id * GROUP_SIZE_M
group_size_m = min(num_pid_m - first_pid_m, GROUP_SIZE_M)
pid_m = first_pid_m + (pid % group_size_m)
pid_n = (pid % num_pid_in_group) // group_size_m
offs_am = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
offs_bn = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
offs_k = tl.arange(0, BLOCK_SIZE_K)
a_ptrs = A + (offs_am[:, None] * stride_am + offs_k[None, :] * stride_ak)
b_ptrs = B + (offs_k[:, None] * stride_bk + offs_bn[None, :] * stride_bn)
As_ptrs = As + offs_am * stride_As_m
offs_bsn = offs_bn // group_n
Bs_ptrs = Bs + offs_bsn * stride_Bs_n
accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
for k in range(0, tl.cdiv(K, BLOCK_SIZE_K)):
a = tl.load(a_ptrs,
mask=offs_k[None, :] < K - k * BLOCK_SIZE_K,
other=0.0)
b = tl.load(b_ptrs,
mask=offs_k[:, None] < K - k * BLOCK_SIZE_K,
other=0.0)
k_start = k * BLOCK_SIZE_K
offs_ks = k_start // group_k
a_s = tl.load(As_ptrs + offs_ks * stride_As_k)
b_s = tl.load(Bs_ptrs + offs_ks * stride_Bs_k)
accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
a_ptrs += BLOCK_SIZE_K * stride_ak
b_ptrs += BLOCK_SIZE_K * stride_bk
if C.dtype.element_ty == tl.bfloat16:
c = accumulator.to(tl.bfloat16)
elif C.dtype.element_ty == tl.float16:
c = accumulator.to(tl.float16)
else:
c = accumulator.to(tl.float32)
offs_cm = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
offs_cn = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
c_ptrs = C + stride_cm * offs_cm[:, None] + stride_cn * offs_cn[None, :]
c_mask = (offs_cm[:, None] < M) & (offs_cn[None, :] < N)
tl.store(c_ptrs, c, mask=c_mask)
@functools.lru_cache
def get_w8a8_block_fp8_configs(N: int, K: int, block_n: int,
block_k: int) -> Optional[dict[int, Any]]:
"""
Return optimized configurations for the w8a8 block fp8 kernel.
The return value will be a dictionary that maps an irregular grid of
batch sizes to configurations of the w8a8 block fp8 kernel. To evaluate the
kernel on a given batch size bs, the closest batch size in the grid should
be picked and the associated configuration chosen to invoke the kernel.
"""
# First look up if an optimized configuration is available in the configs
# directory
device_name = current_platform.get_device_name().replace(" ", "_")
json_file_name = f"N={N},K={K},device_name={device_name},dtype=fp8_w8a8,block_shape=[{block_n},{block_k}].json" # noqa: E501
config_file_path = os.path.join(
os.path.dirname(os.path.realpath(__file__)), "configs", json_file_name)
if os.path.exists(config_file_path):
with open(config_file_path) as f:
logger.info(
"Using configuration from %s for W8A8 Block FP8 kernel.",
config_file_path,
)
# If a configuration has been found, return it
return {int(key): val for key, val in json.load(f).items()}
# If no optimized configuration is available, we will use the default
# configuration
logger.warning(
"Using default W8A8 Block FP8 kernel config. Performance might "
"be sub-optimal! Config file not found at %s",
config_file_path,
)
return None
def w8a8_block_fp8_matmul(
A: torch.Tensor,
B: torch.Tensor,
As: torch.Tensor,
Bs: torch.Tensor,
block_size: list[int],
output_dtype: torch.dtype = torch.float16,
) -> torch.Tensor:
"""This function performs matrix multiplication with block-wise
quantization.
It takes two input tensors `A` and `B` with scales `As` and `Bs`.
The output is returned in the specified `output_dtype`.
Args:
A: The input tensor, e.g., activation.
B: The input tensor, e.g., weight.
As: The per-token-group quantization scale for `A`.
Bs: The per-block quantization scale for `B`.
block_size: The block size for per-block quantization. It should
be 2-dim, e.g., [128, 128].
output_dytpe: The dtype of the returned tensor.
Returns:
torch.Tensor: The result of matmul.
"""
assert len(block_size) == 2
block_n, block_k = block_size[0], block_size[1]
assert A.shape[-1] == B.shape[-1]
assert A.shape[:-1] == As.shape[:-1] and A.is_contiguous()
assert triton.cdiv(A.shape[-1], block_k) == As.shape[-1]
M = A.numel() // A.shape[-1]
assert B.ndim == 2 and Bs.ndim == 2
N, K = B.shape
assert triton.cdiv(N, block_n) == Bs.shape[0]
assert triton.cdiv(K, block_k) == Bs.shape[1]
C_shape = A.shape[:-1] + (N, )
C = A.new_empty(C_shape, dtype=output_dtype)
configs = get_w8a8_block_fp8_configs(N, K, block_size[0], block_size[1])
if configs:
# Get the optimal config if there is one
config = configs[min(configs.keys(), key=lambda x: abs(x - M))]
else:
# Default config
# Block-wise quant: BLOCK_SIZE_N must be divisible by block_size[0]
# BLOCK_SIZE_K must be divisible by block_size[1]
config = {
"BLOCK_SIZE_M": 64,
"BLOCK_SIZE_N": block_size[0],
"BLOCK_SIZE_K": block_size[1],
"GROUP_SIZE_M": 32,
"num_warps": 4,
"num_stages": 2,
}
def grid(META):
return (triton.cdiv(M, META["BLOCK_SIZE_M"]) *
triton.cdiv(N, META["BLOCK_SIZE_N"]), )
_w8a8_block_fp8_matmul[grid](
A,
B,
C,
As,
Bs,
M,
N,
K,
block_n,
block_k,
A.stride(-2),
A.stride(-1),
B.stride(1),
B.stride(0),
C.stride(-2),
C.stride(-1),
As.stride(-2),
As.stride(-1),
Bs.stride(1),
Bs.stride(0),
**config,
)
return C
# Taken from https://github.com/deepseek-ai/DeepGEMM/blob/0c88cd01392c1073c7049a97d6328c7bba9b3947
# TODO(wentao): remove this function when DeepGEMM exposes this function
def get_tma_aligned_size(x: int, element_size: int) -> int:
"""
Global memory address of TMA must be 16-byte aligned.
Since we use column-major layout for the LHS scaling tensor,
the M-axis of the LHS scaling tensor needs to be padded to a multiple of
16 bytes.
Arguments:
x: original M-axis shape of the LHS scaling tensor.
element_size: element size of the LHS scaling tensor.
Returns:
M-axis shape of the LHS scaling tensor after padding.
"""
tma_alignment_bytes = 16
assert tma_alignment_bytes % element_size == 0
alignment = tma_alignment_bytes // element_size
return cdiv(x, alignment) * alignment
# Taken from https://github.com/deepseek-ai/DeepGEMM/blob/0c88cd01392c1073c7049a97d6328c7bba9b3947
# TODO(wentao): remove this function when DeepGEMM exposes this function
def get_col_major_tma_aligned_tensor(x: torch.Tensor) -> torch.Tensor:
"""
Returns TMA-aligned transposed format of the input tensor. `torch.transpose`
will be called if necessary.
If the input tensor is already column-major layout and 16-byte aligned along
the M axis (thus meets the requirement of LHS scaling tensor in
DeepGEMM), this function will do nothing.
Arguments:
x: usually the LHS scaling tensor in GEMM.
Returns:
The LHS scaling tensor of TMA-aligned transposed format.
"""
# NOTES: for the extreme performance, you may rewrite/fuse this function in
# CUDA
assert x.dim() in (2, 3)
remove_dim = False
m, n = x.shape[-2], x.shape[-1]
aligned_m = get_tma_aligned_size(m, x.element_size())
if x.dim() == 2:
if x.stride(0) == 1 and x.stride(1) == aligned_m:
return x
x, remove_dim = x.unsqueeze(0), True
b = x.shape[0]
# The last kernel gives a column-major TMA aligned layout
if x.stride(0) == aligned_m * n and x.stride(1) == 1 and x.stride(
2) == aligned_m:
return x.squeeze(0) if remove_dim else x
# Normal layout requires transposing
aligned_x = torch.transpose(
torch.empty((b, n, aligned_m), device=x.device, dtype=x.dtype), 1, 2)
aligned_x[:, :m, :] = x
aligned_x = aligned_x[:, :m, :]
return aligned_x.squeeze(0) if remove_dim else aligned_x
def requant_weight_ue8m0_inplace(
weight: torch.Tensor,
weight_scale: torch.Tensor,
block_size: Sequence[int] = (128, 128),
) -> None:
"""Re-quantise *weight* so that its per-block scaling factors are in the
UE8M0 (power-of-two) format expected by the new DeepGEMM kernels inplace.
Args:
weight: Block-quantised weight tensor stored in ``torch.float8_e4m3fn``.
Expected shape ``(..., M, K)``.
weight_scale: Corresponding per-block scale tensor (``torch.float32``)
with shape ``(..., M // block_size[0], K // block_size[1])``.
block_size: 2-element iterable ``[block_m, block_k]`` describing the
block quantisation granularity.
"""
if weight.numel() == 0:
return
if weight.dtype != torch.float8_e4m3fn:
raise ValueError("Expected *weight* to be torch.float8_e4m3fn, got "
f"{weight.dtype} instead.")
from vllm.utils.deep_gemm import per_block_cast_to_fp8
block_m, block_k = int(block_size[0]), int(block_size[1])
# Flatten leading dimensions so we can iterate over the last two dims.
leading_shape = weight.shape[:-2]
if len(leading_shape) == 0:
w_view = weight.unsqueeze(0)
s_view = weight_scale.unsqueeze(0)
else:
w_view = weight.reshape(-1, weight.shape[-2], weight.shape[-1])
s_view = weight_scale.reshape(-1, *weight_scale.shape[-2:])
num_mats = w_view.size(0)
for idx in range(num_mats):
w_q = w_view[idx]
s_old = s_view[idx]
# De-quantise with the *old* scaling factors (float32).
m_cur, k_cur = w_q.shape
s_float = s_old.to(torch.float32)
# Expand scales along rows and cols by block size, then crop.
s_exp_r = torch.repeat_interleave(s_float, block_m, dim=0)
s_exp = torch.repeat_interleave(s_exp_r, block_k, dim=1)
s_exp = s_exp[:m_cur, :k_cur]
w_dq = w_q.to(torch.float32) * s_exp
# Re-quantise using power-of-two scaling (UE8M0).
w_requant, s_requant = per_block_cast_to_fp8(w_dq, [block_m, block_k],
use_ue8m0=True)
# Write back the results in-place.
w_q.copy_(w_requant)
s_old.copy_(s_requant)