Cyrus Leung c46b932df2
[Chore] Deprecate SupportsMultiModal.merge_by_field_config (#30170)
Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk>
2025-12-06 07:57:28 +00:00

767 lines
28 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Adapted from https://github.com/fixie-ai/ultravox/blob/ecd58c4041030bae2ad15aa6bcf04ab43199ea02/ultravox/model/ultravox_model.py
"""PyTorch Ultravox model."""
import copy
from collections.abc import Iterable, Mapping, Sequence
from types import SimpleNamespace
from typing import Annotated, Any, Literal, TypeAlias
import torch
from torch import nn
from torch.nn import functional as F
from transformers import BatchFeature, ProcessorMixin
from transformers.modeling_utils import ModuleUtilsMixin
from transformers.models.whisper import WhisperFeatureExtractor
from transformers.models.whisper.modeling_whisper import (
WhisperEncoder,
WhisperEncoderLayer,
)
from vllm.config import VllmConfig
from vllm.config.multimodal import BaseDummyOptions
from vllm.model_executor.layers.activation import MulAndSilu, get_act_fn
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.model_loader import DefaultModelLoader
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.inputs import (
MultiModalDataDict,
MultiModalFieldConfig,
MultiModalKwargsItems,
NestedTensors,
)
from vllm.multimodal.parse import MultiModalDataItems, MultiModalDataParser
from vllm.multimodal.processing import (
BaseMultiModalProcessor,
BaseProcessingInfo,
PromptReplacement,
PromptUpdate,
)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.ultravox import UltravoxConfig
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .interfaces import (
MultiModalEmbeddings,
SupportsLoRA,
SupportsMultiModal,
SupportsPP,
)
from .utils import (
AutoWeightsLoader,
WeightsMapper,
flatten_bn,
init_vllm_registered_model,
maybe_prefix,
)
_AUDIO_PLACEHOLDER_OVERRIDE = "<|audio|>"
_MAX_ENCODER_BATCH_SIZE = 16
class UltravoxAudioFeatureInputs(TensorSchema):
"""
Dimensions:
- b: batch size
- n: number of chunks
- t: Time frames (M)
- nmb: Number of mel bins
"""
type: Literal["audio_features"]
data: Annotated[
torch.Tensor | list[torch.Tensor] | list[list[torch.Tensor]],
TensorShape("bn", "nmb", "t"),
]
lens: Annotated[torch.Tensor, TensorShape("bn")]
"""
Length of the audio frames per chunk. Used for attention mask in WhisperEncoder.
"""
token_len: Annotated[torch.Tensor, TensorShape("bn")]
"""Length of the audio tokens per chunk. Used for flattening the audio features."""
num_chunks: Annotated[torch.Tensor, TensorShape("n")]
"""Number of chunks per audio. Used for flattening the audio features."""
class UltravoxAudioEmbeddingInputs(TensorSchema):
"""
Dimensions:
- b: batch size
- na: number of audios
- afs: audio feature size
- hs: hidden size
"""
type: Literal["audio_embeds"]
data: Annotated[
torch.Tensor | list[torch.Tensor], TensorShape("b", "na", "afs", "hs")
]
UltravoxAudioInputs: TypeAlias = (
UltravoxAudioFeatureInputs | UltravoxAudioEmbeddingInputs
)
class UltravoxProcessingInfo(BaseProcessingInfo):
def get_hf_processor(self, **kwargs: object) -> ProcessorMixin:
config = self.ctx.model_config.hf_config
hf_processor = self.ctx.get_hf_processor(**kwargs)
# NOTE: Ultravox processing definition uses '<|eot_id|>' as the
# placeholder that will cause confusion with the actual end of turn
# token, thus we override placeholder with a reserved token.
hf_processor.audio_token_replacement = _AUDIO_PLACEHOLDER_OVERRIDE
hf_processor.audio_replacement_token_id = config.audio_token_index
return hf_processor
def get_feature_extractor(self, **kwargs: object) -> WhisperFeatureExtractor:
hf_processor = self.get_hf_processor(**kwargs)
# Changed in https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/commit/9a3c571b8fdaf1e66dd3ea61bbcb6db5c70a438e
audio_processor = hf_processor.audio_processor # type: ignore
if isinstance(audio_processor, WhisperFeatureExtractor):
return audio_processor
feature_extractor = audio_processor.feature_extractor # type: ignore
assert isinstance(feature_extractor, WhisperFeatureExtractor)
return feature_extractor
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"audio": None}
class UltravoxDummyInputsBuilder(BaseDummyInputsBuilder[UltravoxProcessingInfo]):
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_audios = mm_counts.get("audio", 0)
return "<|audio|>" * num_audios
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
feature_extractor = self.info.get_feature_extractor()
sampling_rate = feature_extractor.sampling_rate
audio_len = (
feature_extractor.chunk_length * sampling_rate * _MAX_ENCODER_BATCH_SIZE
)
num_audios = mm_counts.get("audio", 0)
audio_overrides = mm_options.get("audio") if mm_options else None
return {
"audio": self._get_dummy_audios(
length=audio_len, num_audios=num_audios, overrides=audio_overrides
)
}
class UltravoxMultiModalProcessor(BaseMultiModalProcessor[UltravoxProcessingInfo]):
def _get_data_parser(self) -> MultiModalDataParser:
feature_extractor = self.info.get_feature_extractor()
return MultiModalDataParser(target_sr=feature_extractor.sampling_rate)
def _call_hf_processor(
self,
prompt: str,
mm_data: Mapping[str, object],
mm_kwargs: Mapping[str, object],
tok_kwargs: Mapping[str, object],
) -> BatchFeature:
# Text-only input not supported in composite processor
if not mm_data.get("audios", []):
prompt_ids = self.info.get_tokenizer().encode(
prompt, add_special_tokens=False
)
prompt_ids = self._apply_hf_processor_tokens_only(prompt_ids)
return BatchFeature(dict(input_ids=[prompt_ids]), tensor_type="pt")
mm_data = dict(mm_data)
audios = mm_data.pop("audios", [])
assert isinstance(audios, list)
feature_extractor = self.info.get_feature_extractor(**mm_kwargs)
mm_kwargs = dict(
**mm_kwargs,
sampling_rate=feature_extractor.sampling_rate,
include_audio_num_chunks=True,
)
item_processor_data = dict(**mm_data, audios=audios)
# some tokenizer kwargs are incompatible with UltravoxProcessor
tok_kwargs.pop("padding", None)
tok_kwargs.pop("truncation", None)
output = super()._call_hf_processor(
prompt=prompt,
mm_data=item_processor_data,
mm_kwargs=mm_kwargs,
tok_kwargs=tok_kwargs,
)
output["audio_features"] = output.pop("audio_values")
return output
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
num_chunks = hf_inputs.get("audio_num_chunks", torch.zeros(0))
return dict(
# to handle longer than 30s audio, each audio might be split
# into multiple chunks as such, their batch dimension can be
# higher than the number of audio samples
audio_features=MultiModalFieldConfig.flat_from_sizes("audio", num_chunks),
audio_token_len=MultiModalFieldConfig.flat_from_sizes("audio", num_chunks),
audio_lens=MultiModalFieldConfig.flat_from_sizes("audio", num_chunks),
# num_chunks can convert audio_chunked to audio batch dimension
audio_num_chunks=MultiModalFieldConfig.batched("audio"),
audio_embeds=MultiModalFieldConfig.batched("audio"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, Any],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
replacement_id = hf_processor.audio_replacement_token_id # type: ignore
# Each audio can be split into multiple chunks.
# chunks_start_idx[i] indicates the start index of the chunks
# belonging to the i-th audio.
out_mm_data = out_mm_kwargs.get_data()
num_chunks = out_mm_data.get("audio_num_chunks", torch.zeros(0))
chunks_start_idx: torch.Tensor = torch.cumsum(
num_chunks, dim=0, dtype=torch.int32
)
chunks_start_idx = torch.cat(
[torch.tensor([0], dtype=torch.int32), chunks_start_idx]
)
def get_replacement_ultravox(item_idx: int):
start = chunks_start_idx[item_idx]
end = chunks_start_idx[item_idx + 1]
audio_token_len = out_mm_data["audio_token_len"][start:end].sum()
return [replacement_id] * int(audio_token_len) # type: ignore
return [
PromptReplacement(
modality="audio",
target="<|audio|>",
replacement=get_replacement_ultravox,
)
]
class StackAudioFrames(nn.Module):
"""
Stack the audio embedding frames to reduce the sequence length by a factor
of `stack_factor`.
"""
def __init__(self, stack_factor: int = 8):
super().__init__()
self.stack_factor = stack_factor
def forward(self, audio_embeds: torch.Tensor) -> torch.Tensor:
B, T, C = audio_embeds.shape
T_pad = (T + self.stack_factor - 1) // self.stack_factor * self.stack_factor
audio_embeds = F.pad(audio_embeds, (0, 0, 0, T_pad - T))
B, T, C = audio_embeds.shape
audio_embeds = audio_embeds.view(
B, T // self.stack_factor, C * self.stack_factor
)
return audio_embeds
class UltravoxFeedForwardProjector(nn.Module):
def __init__(self, config: UltravoxConfig):
super().__init__()
self.hidden_dim = config.hidden_size
self._pad_and_stack = StackAudioFrames(config.stack_factor)
dim_in = config.audio_config.hidden_size * config.stack_factor
self.ln_pre = RMSNorm(dim_in)
self.linear_1 = nn.Linear(dim_in, self.hidden_dim, bias=False)
dim_mid = self.hidden_dim
if config.projector_act == "swiglu":
self.act = MulAndSilu()
dim_mid = dim_mid // 2
else:
self.act = get_act_fn(config.projector_act)
dim_out = config.text_config.hidden_size
self.linear_2 = nn.Linear(dim_mid, dim_out, bias=False)
# Ultravox v0.4.1 and below use layer_norm after the second linear layer
# while v0.5.0 and above uses layer_norm after the first linear layer.
if config.projector_ln_mid:
self.ln_mid: nn.Module = RMSNorm(dim_mid)
self.ln_post = nn.Identity()
else:
self.ln_mid = nn.Identity()
self.ln_post = RMSNorm(dim_out)
def forward(
self, audio_features: torch.Tensor, audio_token_len: torch.Tensor
) -> torch.Tensor:
audio_features = self._pad_and_stack(audio_features)
audio_features = self.ln_pre(audio_features)
hidden_states = self.linear_1(audio_features)
hidden_states = self.act(hidden_states)
hidden_states = self.ln_mid(hidden_states)
hidden_states = self.linear_2(hidden_states)
hidden_states = self.ln_post(hidden_states)
return hidden_states
class UltravoxTransformerProjector(nn.Module, ModuleUtilsMixin):
def __init__(self, config: UltravoxConfig):
super().__init__()
self.config = SimpleNamespace(is_decoder=False)
self._pad_and_stack = StackAudioFrames(config.stack_factor)
dim_in = config.audio_config.hidden_size * config.stack_factor
projector_audio_config = copy.deepcopy(config.audio_config)
self.ln_pre = RMSNorm(dim_in)
self.linear_in = nn.Linear(dim_in, projector_audio_config.d_model)
self.embed_positions = nn.Embedding(
projector_audio_config.max_source_positions,
projector_audio_config.d_model,
)
self.layers = nn.ModuleList(
[
WhisperEncoderLayer(projector_audio_config)
for _ in range(config.num_projector_layers)
]
)
self.ln_post = RMSNorm(projector_audio_config.d_model)
self.linear_out = nn.Linear(
projector_audio_config.d_model, config.text_config.hidden_size
)
def forward(
self, audio_features: torch.Tensor, audio_token_len: torch.Tensor
) -> torch.Tensor:
audio_features = self._pad_and_stack(audio_features)
max_len_stacked = audio_features.shape[1]
attention_mask = torch.arange(max_len_stacked, device=audio_features.device)[
None, :
].lt(audio_token_len[:, None])
extended_attention_mask = self.get_extended_attention_mask(
attention_mask, attention_mask.shape, audio_features.dtype
)
hidden_states = self.ln_pre(audio_features)
hidden_states = self.linear_in(hidden_states)
positions = self.embed_positions(
torch.arange(hidden_states.size(1), device=hidden_states.device)
)
hidden_states = hidden_states + positions
for layer in self.layers:
layer_outputs = layer(
hidden_states,
attention_mask=extended_attention_mask,
layer_head_mask=None,
)
hidden_states = layer_outputs[0]
hidden_states = self.ln_post(hidden_states)
hidden_states = self.linear_out(hidden_states)
return hidden_states
class ModifiedWhisperEncoder(WhisperEncoder):
"""
Encoder portion of OpenAI's Whisper model.
This implementation is a slightly modified version of HF Transformers'
Whisper Encoder, with only a few fixes:
1. base_model_prefix updated to allow for doing `.from_pretrained`
directly on the encoder
2. allow less than 30 second of audio padding to be passed in:
- relaxed ValueError check for `input_features` length to be less
than or equal to `expected_seq_length` instead of strictly equal
- embed_pos is now sliced to match the length of `inputs_embeds`
Original: https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/modeling_whisper.py
See commentary: https://github.com/huggingface/transformers/issues/25744
"""
base_model_prefix = "model.encoder"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.config.is_decoder = False
@property
def max_context_length(self):
return (
self.config.max_source_positions
* self.conv1.stride[0]
* self.conv2.stride[0]
)
def get_attention_mask_by_audio_len(
self, audio_lens: torch.Tensor | None, hidden_states: torch.Tensor
):
"""
Create attention mask based on audio lengths to mask out padding tokens
For each sample in batch:
- Convert raw audio length to feature length after convolutions
- Create bool mask: True for valid positions and False for padding
- Convert to attention mask format expected by transformer layers
(1.0 for positions to attend to, large negative for positions to ignore)
This masking ensures consistent behavior between training and inference
by preventing the model from attending to padding tokens in both cases
"""
if audio_lens is None:
return None
audio_feature_len = self._get_feat_extract_output_lengths(audio_lens)
max_seq_len = hidden_states.shape[1]
attention_mask = torch.arange(max_seq_len, device=hidden_states.device)[
None, :
].lt(audio_feature_len.view(-1, 1))
attention_mask = self.get_extended_attention_mask(
attention_mask,
None,
dtype=hidden_states.dtype,
)
return attention_mask
def forward(
self,
input_features: torch.Tensor,
audio_lens: torch.Tensor | None = None,
):
expected_seq_length = self.max_context_length
if input_features.shape[-1] > expected_seq_length:
raise ValueError(
f"Whisper expects the mel input features to be of length "
f"{expected_seq_length} or less, but found "
f"{input_features.shape[-1]}. Make sure to pad the input mel "
f"features to {expected_seq_length}."
)
inputs_embeds = nn.functional.gelu(self.conv1(input_features))
inputs_embeds = nn.functional.gelu(self.conv2(inputs_embeds))
inputs_embeds = inputs_embeds.permute(0, 2, 1)
embed_pos = self.embed_positions.weight[: inputs_embeds.size(-2)]
hidden_states = inputs_embeds + embed_pos
hidden_states = nn.functional.dropout(
hidden_states, p=self.dropout, training=self.training
)
attention_mask = self.get_attention_mask_by_audio_len(audio_lens, hidden_states)
for encoder_layer in self.layers:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=None,
)
hidden_states = layer_outputs[0]
hidden_states = self.layer_norm(hidden_states)
return hidden_states
@MULTIMODAL_REGISTRY.register_processor(
UltravoxMultiModalProcessor,
info=UltravoxProcessingInfo,
dummy_inputs=UltravoxDummyInputsBuilder,
)
class UltravoxModel(nn.Module, SupportsMultiModal, SupportsPP, SupportsLoRA):
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
hf_to_vllm_mapper = WeightsMapper(
orig_to_new_prefix={"audio_tower.model.encoder.": "audio_tower."}
)
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("audio"):
return "<|audio|>"
raise ValueError("Only audio modality is supported")
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config: UltravoxConfig = vllm_config.model_config.hf_config
multimodal_config = vllm_config.model_config.multimodal_config
self.config = config
self.multi_modal_config = multimodal_config
assert self.multi_modal_config
self.secondary_weights = []
self.audio_tower = ModifiedWhisperEncoder(config.audio_config)
if config.audio_model_id is not None:
# this prefix is not for initialization, but for loading weights
# note the trailing dot
self.secondary_weights.append(
DefaultModelLoader.Source(
model_or_path=config.audio_model_id,
revision=None,
prefix="audio_tower.",
)
)
if config.num_projector_layers > 0:
self.multi_modal_projector = UltravoxTransformerProjector(config)
else:
self.multi_modal_projector = UltravoxFeedForwardProjector(config)
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.wrapped_model_config,
prefix=maybe_prefix(prefix, "language_model"),
)
if config.text_model_id is not None:
# this prefix is not for initialization, but for loading weights
# note the trailing dot
self.secondary_weights.append(
DefaultModelLoader.Source(
model_or_path=config.text_model_id,
revision=None,
prefix="language_model.",
)
)
self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors
)
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="language_model.",
connector="multi_modal_projector.",
tower_model="audio_tower.",
)
def _audio_features_to_embeddings(
self,
input_features: torch.Tensor,
audio_lens: torch.Tensor,
audio_token_len: torch.Tensor,
) -> torch.Tensor:
audio_features = input_features.to(self.audio_tower.dtype)
batch_size = audio_features.size(0)
audio_embeddings = []
# Process audio features in batches to keep memory usage predictable
for start in range(0, batch_size, _MAX_ENCODER_BATCH_SIZE):
end = min(start + _MAX_ENCODER_BATCH_SIZE, batch_size)
# Process through audio tower
batch_features = self.audio_tower(
audio_features[start:end], audio_lens[start:end]
)
batch_features = batch_features.to(self.audio_tower.dtype)
# Process through projector
batch_embeddings = self.multi_modal_projector(
batch_features, audio_token_len[start:end]
)
audio_embeddings.append(batch_embeddings)
# Concatenate results
audio_embeddings = torch.cat(audio_embeddings, dim=0)
return audio_embeddings
def _parse_and_validate_audio_input(
self, **kwargs: object
) -> UltravoxAudioInputs | None:
audio_features = kwargs.pop("audio_features", None)
audio_embeds = kwargs.pop("audio_embeds", None)
audio_lens = kwargs.pop("audio_lens", None)
audio_token_len = kwargs.pop("audio_token_len", None)
audio_num_chunks = kwargs.pop("audio_num_chunks", None)
if audio_features is None and audio_embeds is None:
return None
if audio_features is not None:
return UltravoxAudioFeatureInputs(
type="audio_features",
data=audio_features,
lens=audio_lens,
token_len=audio_token_len,
num_chunks=audio_num_chunks,
)
if audio_embeds is not None:
return UltravoxAudioEmbeddingInputs(type="audio_embeds", data=audio_embeds)
raise AssertionError("This line should be unreachable.")
def _process_audio_input(
self,
audio_input: UltravoxAudioInputs,
) -> NestedTensors | tuple[torch.Tensor, ...]:
if audio_input["type"] == "audio_embeds":
return audio_input["data"]
# Pad and concatenate audio features
# [[B1, 80, M1], [B2, 80, M2]] -> [B1+B2, 80, max(M1, M2)]
audio_features = pad_and_concat_to_dim3(audio_input["data"])
audio_lens = audio_input["lens"]
audio_token_len = audio_input["token_len"]
embeddings = self._audio_features_to_embeddings(
audio_features, audio_lens, audio_token_len
)
# We should flatten and concatenate embeddings based on token lengths
# For example, with token_len = [4, 2, 3], flattened_embeddings will be
# concat(embeddings[0][:4], embeddings[1][:2], embeddings[2][:3])
# Create a mask of valid indices based on token lengths
max_len = embeddings.shape[1]
indices = torch.arange(max_len, device=embeddings.device).expand(
embeddings.shape[0], -1
)
mask = indices < audio_token_len[:, None]
# Apply mask and flatten
flattened_embeddings = embeddings[mask]
# Return one tensor per input audio
embed_lens = [
chunk_lens.sum().item()
for chunk_lens in audio_token_len.split(audio_input["num_chunks"].tolist())
]
return flattened_embeddings.split(embed_lens)
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
audio_input = self._parse_and_validate_audio_input(**kwargs)
if audio_input is None:
return []
audio_embeddings = self._process_audio_input(audio_input)
return audio_embeddings
def embed_input_ids(
self,
input_ids: torch.Tensor,
multimodal_embeddings: MultiModalEmbeddings | None = None,
*,
is_multimodal: torch.Tensor | None = None,
# Multi-modal token ID may exceed vocab size
handle_oov_mm_token: bool = True,
) -> torch.Tensor:
# This is to satisfy the type checker for each overload
if multimodal_embeddings is None or is_multimodal is None:
return super().embed_input_ids(input_ids)
return super().embed_input_ids(
input_ids,
multimodal_embeddings=multimodal_embeddings,
is_multimodal=is_multimodal,
handle_oov_mm_token=handle_oov_mm_token,
)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: torch.Tensor | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs,
) -> torch.Tensor | IntermediateTensors:
"""Run forward pass for Ultravox
One key thing to understand is the `input_ids` already accounts for the
positions of the to-be-inserted audio embeddings. The to-be-inserted
audio has a size that is essentially 6.25 tokens per second of audio.
This way, the `positions` and `attn_metadata` are consistent
with the `input_ids`.
Args:
input_ids: Flattened (concatenated) input_ids corresponding to a
batch.
positions: Position indices for the input tokens.
intermediate_tensors: Intermediate tensors from prior forward pass.
inputs_embeds: Optional tensor of input embeddings.
"""
if intermediate_tensors is not None:
inputs_embeds = None
language_model = self.language_model
if hasattr(language_model, "language_model"):
language_model = language_model.language_model
hidden_states = language_model.model(
input_ids, positions, intermediate_tensors, inputs_embeds=inputs_embeds
)
return hidden_states
def compute_logits(self, hidden_states: torch.Tensor) -> torch.Tensor:
return self.language_model.compute_logits(hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self, ignore_unexpected_prefixes=["audio_tower."])
return loader.load_weights(weights, mapper=self.hf_to_vllm_mapper)
def pad_and_concat_to_dim3(
features: torch.Tensor | list[torch.Tensor] | list[list[torch.Tensor]],
) -> torch.Tensor:
"""
Pad and concatenate a list of tensors.
output:
Tensor of shape [B, C, M] where M is the maximum length of the input
tensors, B is the sum of the batch sizes of the input tensors.
C must be the same for all input tensors.
"""
if isinstance(features, torch.Tensor):
if features.ndim > 3:
# Flatten [B, N, 80, M] -> [B * N, 80, M]
features = flatten_bn(features)
return features
features = [pad_and_concat_to_dim3(f) for f in features]
max_len = max(f.shape[-1] for f in features)
# Ensure all features have dim=3
features = [f.view(-1, *f.shape[-2:]) for f in features]
# Pad and concatenate:
# [[B1, 80, M1], [B2, 80, M2]] -> [B1+B2, 80, max(M1, M2)]
features = [F.pad(f, (0, max_len - f.shape[-1])) for f in features]
return torch.cat(features)