vllm/vllm/attention/backends/hpu_attn.py
Agata Dobrzyniewicz c48334d405
[Hardware][Intel-Gaudi] Update hpu-extension and update bucketing system for HPU device (#17186)
Signed-off-by: Agata Dobrzyniewicz <adobrzyniewicz@habana.ai>
2025-04-26 05:55:14 -07:00

302 lines
12 KiB
Python

# SPDX-License-Identifier: Apache-2.0
###############################################################################
# Copyright (C) 2024 Habana Labs, Ltd. an Intel Company
###############################################################################
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Tuple, Type
import torch
import vllm_hpu_extension.kernels as kernels
import vllm_hpu_extension.ops as ops
from vllm_hpu_extension.flags import enabled_flags
from vllm_hpu_extension.utils import Matmul, Softmax, VLLMKVCache
from vllm.attention.backends.abstract import (AttentionBackend, AttentionImpl,
AttentionLayer,
AttentionMetadata, AttentionType,
is_quantized_kv_cache)
from vllm.attention.backends.utils import CommonAttentionState
from vllm.attention.ops.hpu_paged_attn import (HPUPagedAttention,
HPUPagedAttentionMetadata)
from vllm.logger import init_logger
logger = init_logger(__name__)
class HPUAttentionBackend(AttentionBackend):
@staticmethod
def get_name() -> str:
return "HPU_ATTN"
@staticmethod
def get_impl_cls() -> Type["HPUAttentionImpl"]:
return HPUAttentionImpl
@staticmethod
def get_metadata_cls() -> Type["AttentionMetadata"]:
return HPUAttentionMetadata
@staticmethod
def get_state_cls() -> Type["CommonAttentionState"]:
return CommonAttentionState
@staticmethod
def get_kv_cache_shape(
num_blocks: int,
block_size: int,
num_kv_heads: int,
head_size: int,
) -> Tuple[int, ...]:
return HPUPagedAttention.get_kv_cache_shape(num_blocks, block_size,
num_kv_heads, head_size)
@staticmethod
def swap_blocks(
src_kv_cache: torch.Tensor,
dst_kv_cache: torch.Tensor,
src_to_dst: Dict[int, int],
) -> None:
HPUPagedAttention.swap_blocks(src_kv_cache, dst_kv_cache, src_to_dst)
@staticmethod
def copy_blocks(
kv_caches: List[torch.Tensor],
src_to_dists: Dict[int, List[int]],
) -> None:
HPUPagedAttention.copy_blocks(kv_caches, src_to_dists)
@dataclass
class HPUAttentionMetadata(HPUPagedAttentionMetadata, AttentionMetadata):
"""Metadata for HPUAttentionbackend."""
# Currently, input sequences can only contain all prompts
# or all decoding. True if all sequences are prompts.
is_prompt: bool
attn_bias: Optional[torch.Tensor]
seq_lens_tensor: Optional[torch.Tensor]
class HPUAttentionImpl(AttentionImpl, torch.nn.Module):
"""
If the input tensors contain prompt tokens, the layout is as follows:
|<--------------- num_prefill_tokens ----------------->|
|<--prefill_0-->|<--prefill_1-->|...|<--prefill_N-1--->|
Otherwise, the layout is as follows:
|<----------------- num_decode_tokens ------------------>|
|<--decode_0-->|..........|<--decode_M-1-->|<--padding-->|
Generation tokens can contain padding when cuda-graph is used.
Currently, prompt tokens don't contain any padding.
The prompts might have different lengths, while the generation tokens
always have length 1.
"""
def __init__(
self,
num_heads: int,
head_size: int,
scale: float,
num_kv_heads: int,
alibi_slopes: Optional[List[float]],
sliding_window: Optional[int],
kv_cache_dtype: str,
blocksparse_params: Optional[Dict[str, Any]] = None,
max_seq_len: int = 4096,
attn_type: str = AttentionType.DECODER,
use_irope: bool = False,
) -> None:
super(AttentionImpl, self).__init__()
if use_irope:
logger.warning_once(
"Using irope in HPU is not supported yet, it will fall back "
"to global attention for long context.")
self.kv_cache_dtype = kv_cache_dtype
self.num_heads = num_heads
self.head_size = head_size
self.scale = float(scale)
self.matmul_qk = Matmul()
self.softmax = Softmax()
self.matmul_av = Matmul()
self.batch2block_matmul = Matmul()
self.block2batch_matmul = Matmul()
self.k_cache = VLLMKVCache()
self.v_cache = VLLMKVCache()
self.fused_scaled_dot_product_attention = kernels.fsdpa()
self.prefill_impl = 'naive'
if "flex_attention" in enabled_flags():
self.prefill_impl = 'flex'
if "fsdpa" in enabled_flags():
assert alibi_slopes is None, \
'Prefill with FusedSDPA not supported with alibi slopes!'
self.prefill_impl = 'fsdpa'
self.num_kv_heads = num_heads if num_kv_heads is None else num_kv_heads
self.sliding_window = sliding_window
self.alibi_slopes = alibi_slopes
if alibi_slopes is not None:
alibi_slopes_tensor = torch.tensor(alibi_slopes,
dtype=torch.bfloat16)
self.alibi_slopes = alibi_slopes_tensor
assert self.num_heads % self.num_kv_heads == 0
self.num_queries_per_kv = self.num_heads // self.num_kv_heads
if self.prefill_impl == 'fsdpa':
assert alibi_slopes is None, \
'Prefill with FusedSDPA not supported with alibi slopes!'
supported_head_sizes = HPUPagedAttention.get_supported_head_sizes()
if head_size not in supported_head_sizes:
raise ValueError(
f"Head size {head_size} is not supported by PagedAttention. "
f"Supported head sizes are: {supported_head_sizes}.")
self.attn_type = attn_type
if self.attn_type != AttentionType.DECODER:
raise NotImplementedError("Encoder self-attention and "
"encoder/decoder cross-attention "
"are not implemented for "
"HPUAttentionImpl")
if is_quantized_kv_cache(self.kv_cache_dtype):
raise NotImplementedError(
"HPUAttention with FP8 KV cache not yet supported")
def forward(
self,
layer: AttentionLayer,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
kv_cache: torch.Tensor,
attn_metadata: HPUAttentionMetadata,
output: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""Forward pass with xFormers and PagedAttention.
Args:
query: shape = [num_tokens, num_heads * head_size]
key: shape = [num_tokens, num_kv_heads * head_size]
value: shape = [num_tokens, num_kv_heads * head_size]
kv_cache = [2, num_blocks, block_size * num_kv_heads * head_size]
attn_metadata: Metadata for attention.
Returns:
shape = [num_tokens, num_heads * head_size]
"""
batch_size, seq_len, hidden_size = query.shape
_, seq_len_kv, _ = key.shape
key = key.view(-1, self.num_kv_heads, self.head_size)
value = value.view(-1, self.num_kv_heads, self.head_size)
block_indices = attn_metadata.block_indices
block_offsets = attn_metadata.block_offsets
key_cache = None
value_cache = None
if attn_metadata.is_prompt and self.attn_type \
is not AttentionType.ENCODER_ONLY \
and attn_metadata.block_list is None:
key = key.unflatten(0, (block_indices.size(0), -1))
value = value.unflatten(0, (block_indices.size(0), -1))
if kv_cache is not None and isinstance(kv_cache, tuple):
key_cache, value_cache = HPUPagedAttention.split_kv_cache(
kv_cache, self.num_kv_heads, self.head_size)
# Reshape the input keys and values and store them in the cache.
# If kv_cache is not provided, the new key and value tensors are
# not cached. This happens during the initial memory profiling run.
key_cache = self.k_cache(key, key_cache, block_indices,
block_offsets)
value_cache = self.v_cache(value, value_cache, block_indices,
block_offsets)
if attn_metadata.is_prompt:
# Prompt run.
query_shape = (batch_size, seq_len, self.num_heads, self.head_size)
kv_shape = (batch_size, seq_len_kv, self.num_kv_heads,
self.head_size)
attn_bias = attn_metadata.attn_bias
if attn_bias is not None and self.alibi_slopes is not None:
position_bias = _make_alibi_bias(self.alibi_slopes,
self.num_kv_heads,
attn_bias.dtype,
attn_bias.shape[-1])
attn_bias = attn_bias.tile((1, self.num_kv_heads, 1, 1))
attn_bias.add_(position_bias)
out = ops.prompt_attention(
impl=self.prefill_impl,
query=query.view(query_shape),
key=key.view(kv_shape),
value=value.view(kv_shape),
is_causal=True,
attn_bias=attn_bias,
valid_seq_lengths=attn_metadata.seq_lens_tensor,
**self.common_attention_args())
output = out.reshape(batch_size, seq_len, hidden_size)
else:
# Decoding run.
output = HPUPagedAttention.forward_decode(
query=query,
key_cache=key_cache,
value_cache=value_cache,
block_list=attn_metadata.block_list,
block_mapping=attn_metadata.block_mapping,
block_bias=attn_metadata.attn_bias,
block_groups=attn_metadata.block_groups,
**self.common_attention_args())
# Reshape the output tensor.
return output.view(batch_size, seq_len, hidden_size)
def common_attention_args(self):
fsdpa_op = self.fused_scaled_dot_product_attention.apply \
if self.fused_scaled_dot_product_attention is not None else None
return {
'scale': self.scale,
'matmul_qk_op': self.matmul_qk,
'matmul_av_op': self.matmul_av,
'batch2block_matmul_op': self.batch2block_matmul,
'block2batch_matmul_op': self.block2batch_matmul,
'fsdpa_op': fsdpa_op,
'keys_fetch_func': self.k_cache.fetch_from_cache,
'values_fetch_func': self.v_cache.fetch_from_cache,
'softmax_op': self.softmax,
}
def _make_alibi_bias(
alibi_slopes: torch.Tensor,
num_kv_heads: int,
dtype: torch.dtype,
seq_len: int,
) -> torch.Tensor:
bias = torch.arange(seq_len, dtype=dtype)
# NOTE(zhuohan): HF uses
# `bias = bias[None, :].repeat(seq_len, 1)`
# here. We find that both biases give the same results, but
# the bias below more accurately follows the original ALiBi
# paper.
# Calculate a matrix where each element represents ith element- jth
# element.
bias = bias[None, :] - bias[:, None]
padded_len = (seq_len + 7) // 8 * 8
num_heads = alibi_slopes.shape[0]
bias = torch.empty(
1, # batch size
num_heads,
seq_len,
padded_len,
device=alibi_slopes.device,
dtype=dtype,
)[:, :, :, :seq_len].copy_(bias)
bias.mul_(alibi_slopes[:, None, None])
if num_heads != num_kv_heads:
bias = bias.unflatten(1, (num_kv_heads, num_heads // num_kv_heads))
return bias