Zhiyuan Li 4e68cc9b6a
[Model] Introduce Kimi Linear to vLLM (#27809)
Signed-off-by: lizhiyuan <lizhiyuan@moonshot.cn>
Signed-off-by: Zhiyuan Li <uniartisan2017@gmail.com>
2025-10-30 21:02:27 +08:00

226 lines
7.3 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import torch
from vllm.config.cache import MambaDType
from vllm.config.model import ModelDType
from vllm.distributed import divide
from vllm.utils.torch_utils import (
STR_DTYPE_TO_TORCH_DTYPE,
get_kv_cache_torch_dtype,
)
class MambaStateDtypeCalculator:
@classmethod
def linear_attention_state_dtype(
cls,
model_dtype: ModelDType | torch.dtype,
mamba_cache_dtype: MambaDType,
) -> tuple[torch.dtype, ...]:
# TODO (tdoublep) requires testing
if mamba_cache_dtype == "float32":
raise ValueError("fp32 state for minimax is not yet supported")
state_dtype = get_kv_cache_torch_dtype(mamba_cache_dtype, model_dtype)
return (state_dtype,)
@classmethod
def mamba1_state_dtype(
cls,
model_dtype: ModelDType | torch.dtype,
mamba_cache_dtype: MambaDType,
mamba_ssm_cache_dtype: MambaDType,
) -> tuple[torch.dtype, ...]:
return cls._mamba_state_dtype(
model_dtype, mamba_cache_dtype, mamba_ssm_cache_dtype
)
@classmethod
def mamba2_state_dtype(
cls,
model_dtype: ModelDType | torch.dtype,
mamba_cache_dtype: MambaDType,
mamba_ssm_cache_dtype: MambaDType,
) -> tuple[torch.dtype, ...]:
return cls._mamba_state_dtype(
model_dtype, mamba_cache_dtype, mamba_ssm_cache_dtype
)
@classmethod
def _mamba_state_dtype(
cls,
model_dtype: ModelDType | torch.dtype,
mamba_cache_dtype: MambaDType,
mamba_ssm_cache_dtype: MambaDType,
) -> tuple[torch.dtype, ...]:
conv_state_dtype = get_kv_cache_torch_dtype(mamba_cache_dtype, model_dtype)
if mamba_ssm_cache_dtype == "auto":
temporal_state_dtype = conv_state_dtype
else:
temporal_state_dtype = STR_DTYPE_TO_TORCH_DTYPE[mamba_ssm_cache_dtype]
return (conv_state_dtype, temporal_state_dtype)
@classmethod
def short_conv_state_dtype(
cls,
model_dtype: ModelDType | torch.dtype,
mamba_cache_dtype: MambaDType,
) -> tuple[torch.dtype, ...]:
conv_state_dtype = get_kv_cache_torch_dtype(mamba_cache_dtype, model_dtype)
return (conv_state_dtype,)
@classmethod
def gated_delta_net_state_dtype(
cls,
model_dtype: ModelDType | torch.dtype,
mamba_cache_dtype: MambaDType,
) -> tuple[torch.dtype, torch.dtype]:
state_dtype = get_kv_cache_torch_dtype(mamba_cache_dtype, model_dtype)
return (state_dtype, state_dtype)
@classmethod
def kda_state_dtype(
cls,
model_dtype: ModelDType | torch.dtype,
mamba_cache_dtype: MambaDType,
):
state_dtype = get_kv_cache_torch_dtype(mamba_cache_dtype, model_dtype)
return (state_dtype, state_dtype, state_dtype, torch.float32)
class MambaStateShapeCalculator:
@classmethod
def linear_attention_state_shape(
cls,
num_heads: int,
tp_size: int,
head_dim: int,
) -> tuple[tuple[int, int, int], ...]:
state_shape = (num_heads // tp_size, head_dim, head_dim)
return (state_shape,)
@classmethod
def mamba1_state_shape(
cls,
tp_world_size: int,
intermediate_size: int,
state_size: int,
conv_kernel: int,
) -> tuple[tuple[int, int], tuple[int, int]]:
conv_state_shape = (divide(intermediate_size, tp_world_size), conv_kernel - 1)
temporal_state_shape = (divide(intermediate_size, tp_world_size), state_size)
conv_state_shape = conv_state_shape[1], conv_state_shape[0]
return conv_state_shape, temporal_state_shape
@classmethod
def mamba2_state_shape(
cls,
tp_world_size: int,
intermediate_size: int,
n_groups: int,
num_heads: int,
head_dim: int,
state_size: int,
conv_kernel: int,
) -> tuple[tuple[int, int], tuple[int, int, int]]:
# if n_groups is not divisible by world_size, need to extend the shards
# to ensure all groups needed by a head is sharded along with it
n_groups = n_groups + cls.extra_groups_for_head_shards(n_groups, tp_world_size)
# heads and n_groups are TP-ed
conv_dim = intermediate_size + 2 * n_groups * state_size
# contiguous along 'dim' axis
conv_state_shape = (conv_kernel - 1, divide(conv_dim, tp_world_size))
# These are not TP-ed as they depend on A, dt_bias, D
# - they are typically small
# e.g., (h_heads, head_dim, state_size) = (128, 64, 128)
temporal_state_shape = (divide(num_heads, tp_world_size), head_dim, state_size)
return conv_state_shape, temporal_state_shape
@classmethod
def short_conv_state_shape(
cls,
tp_world_size: int,
intermediate_size: int,
conv_kernel: int,
) -> tuple[tuple[int, int]]:
conv_dim = divide(intermediate_size, tp_world_size)
conv_state_shape = (conv_kernel - 1, conv_dim)
return (conv_state_shape,)
@classmethod
def extra_groups_for_head_shards(cls, ngroups: int, tp_size: int):
"""Compute the increase in group numbers to account for
replication in order to accompany the head shards."""
# in the case ngoups % tp_size == 0, this will be zero
if ngroups % tp_size == 0:
return 0
# for n_groups == 1, this is exactly tp_size - n_groups
return tp_size - ngroups
@classmethod
def gated_delta_net_state_shape(
cls,
tp_world_size: int,
num_k_heads: int,
num_v_heads: int,
head_k_dim: int,
head_v_dim: int,
conv_kernel_size: int,
num_spec: int = 0,
):
conv_dim = head_k_dim * num_k_heads * 2 + head_v_dim * num_v_heads
conv_state_shape = (
divide(conv_dim, tp_world_size),
conv_kernel_size - 1 + num_spec,
)
conv_state_shape = conv_state_shape[1], conv_state_shape[0]
temporal_state_shape = (
divide(num_v_heads, tp_world_size),
head_k_dim,
head_v_dim,
)
return conv_state_shape, temporal_state_shape
@classmethod
def kda_state_shape(
cls,
tp_world_size: int,
num_heads: int,
head_dim: int,
num_k_heads: int | None = None,
head_k_dim: int | None = None,
conv_kernel_size: int = 4,
num_spec: int = 0,
) -> tuple[tuple[int, int], tuple[int, int], tuple[int, int], tuple[int, int, int]]:
if num_k_heads is None:
num_k_heads = num_heads
if head_k_dim is None:
head_k_dim = head_dim
proj_size = num_heads * head_dim
proj_k_size = num_k_heads * head_k_dim
conv_state_shape = (divide(proj_size, tp_world_size), conv_kernel_size - 1)
conv_state_k_shape = (divide(proj_k_size, tp_world_size), conv_kernel_size - 1)
recurrent_state_shape = (divide(num_heads, tp_world_size), head_dim, head_dim)
conv_state_shape = conv_state_shape[1], conv_state_shape[0]
conv_state_k_shape = conv_state_k_shape[1], conv_state_k_shape[0]
return (
conv_state_shape,
conv_state_k_shape,
conv_state_k_shape,
recurrent_state_shape,
)