Harry Mellor cf3eacfe58
Standardise get_rope to use rope_parameters["partial_rotary_factor"], not rotary_dim (#30389)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-12-11 20:45:23 +00:00

857 lines
34 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
#
# Copyright 2025 the LLAMA4, Meta Inc., vLLM, and HuggingFace Inc. team.
# All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Inference-only LLaMA model compatible with HuggingFace weights."""
from collections.abc import Iterable
import torch
from torch import nn
from transformers import Llama4TextConfig
from vllm.attention.layer import Attention
from vllm.attention.layers.chunked_local_attention import ChunkedLocalAttention
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import (
get_ep_group,
get_tensor_model_parallel_world_size,
tensor_model_parallel_all_gather,
)
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe import SharedFusedMoE
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear,
)
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader,
maybe_remap_kv_scale_name,
)
from vllm.model_executor.models.interfaces import MixtureOfExperts
from vllm.model_executor.models.utils import sequence_parallel_chunk
from .llama import LlamaForCausalLM, LlamaMLP, LlamaModel
from .utils import (
AutoWeightsLoader,
PPMissingLayer,
extract_layer_index,
fast_topk,
is_pp_missing_parameter,
)
logger = init_logger(__name__)
class Llama4MoE(nn.Module):
@staticmethod
def custom_routing_function(
hidden_states: torch.Tensor,
gating_output: torch.Tensor,
topk: int,
renormalize: bool,
) -> tuple[torch.Tensor, torch.Tensor]:
router_scores, router_indices = fast_topk(gating_output, topk, dim=-1)
# pseudo-standard is that the router scores are floats
router_scores = torch.sigmoid(router_scores.float())
return (router_scores, router_indices.to(torch.int32))
def __init__(self, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
parallel_config = vllm_config.parallel_config
quant_config = vllm_config.quant_config
self.tp_size = get_tensor_model_parallel_world_size()
self.top_k = config.num_experts_per_tok
self.is_sequence_parallel = parallel_config.use_sequence_parallel_moe
self.ep_group = get_ep_group().device_group
self.ep_rank = get_ep_group().rank_in_group
self.ep_size = self.ep_group.size()
intermediate_size_moe = config.intermediate_size
self.router = ReplicatedLinear(
config.hidden_size,
config.num_local_experts,
bias=False,
quant_config=None,
prefix=f"{prefix}.router",
)
self.shared_expert = LlamaMLP(
hidden_size=config.hidden_size,
intermediate_size=intermediate_size_moe,
hidden_act="silu",
quant_config=quant_config,
bias=False,
prefix=f"{prefix}.shared_expert",
reduce_results=False,
disable_tp=self.is_sequence_parallel,
)
# Load balancing settings.
eplb_config = parallel_config.eplb_config if parallel_config else None
self.enable_eplb = parallel_config.enable_eplb if parallel_config else False
self.n_redundant_experts = (
eplb_config.num_redundant_experts if eplb_config else 0
)
self.n_routed_experts: int = config.num_local_experts
self.n_logical_experts = self.n_routed_experts
self.n_shared_experts: int = 1
self.n_local_experts: int = config.num_local_experts
self.n_physical_experts = self.n_local_experts + self.n_redundant_experts
self.n_local_physical_experts = self.n_physical_experts // self.ep_size
self.experts = SharedFusedMoE(
shared_experts=self.shared_expert,
num_experts=config.num_local_experts,
top_k=config.num_experts_per_tok,
hidden_size=config.hidden_size,
custom_routing_function=Llama4MoE.custom_routing_function,
intermediate_size=intermediate_size_moe,
apply_router_weight_on_input=True,
reduce_results=False,
renormalize=False,
quant_config=quant_config,
prefix=f"{prefix}.experts",
is_sequence_parallel=self.is_sequence_parallel,
enable_eplb=self.enable_eplb,
num_redundant_experts=self.n_redundant_experts,
)
def forward(self, hidden_states):
num_tokens = hidden_states.shape[0]
if self.is_sequence_parallel:
hidden_states = sequence_parallel_chunk(hidden_states)
router_logits, _ = self.router(hidden_states)
shared_out, routed_out = self.experts(
hidden_states=hidden_states,
router_logits=router_logits,
)
experts_out = routed_out + shared_out
if self.is_sequence_parallel:
experts_out = tensor_model_parallel_all_gather(experts_out, 0)
experts_out = experts_out[:num_tokens]
elif self.tp_size > 1:
experts_out = self.experts.maybe_all_reduce_tensor_model_parallel(
experts_out
)
return experts_out
class Llama4Attention(nn.Module):
def __init__(
self,
config: Llama4TextConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
max_position_embeddings: int = 8192,
quant_config: QuantizationConfig | None = None,
bias: bool = False,
bias_o_proj: bool = False,
cache_config: CacheConfig | None = None,
prefix: str = "",
) -> None:
super().__init__()
self.layer_idx = extract_layer_index(prefix)
self.hidden_size = hidden_size
self.no_rope_layers = config.no_rope_layers
self.nope = self.no_rope_layers[self.layer_idx] == 0
self.use_qk_norm = config.use_qk_norm and not self.nope
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = config.head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.scaling = self.head_dim**-0.5
self.attn_temperature_tuning = self.nope and config.attn_temperature_tuning
self.floor_scale = getattr(config, "floor_scale", 8192.0)
self.attn_scale = getattr(config, "attn_scale", 0.1)
self.max_position_embeddings = max_position_embeddings
self.n_rep = self.num_heads // self.num_kv_heads
self.qk_norm = (
RMSNorm(
hidden_size=self.head_dim,
eps=config.rms_norm_eps,
has_weight=False,
dtype=torch.float32,
)
if self.use_qk_norm
else None
)
self.qkv_proj = QKVParallelLinear(
hidden_size=hidden_size,
head_size=self.head_dim,
total_num_heads=self.total_num_heads,
total_num_kv_heads=self.total_num_kv_heads,
bias=bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
input_size=self.total_num_heads * self.head_dim,
output_size=hidden_size,
bias=bias_o_proj,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
is_neox_style = True
is_gguf = quant_config and quant_config.get_name() == "gguf"
if is_gguf and config.model_type == "llama":
is_neox_style = False
self.rotary_emb = (
get_rope(
self.head_dim,
max_position=max_position_embeddings,
rope_parameters=config.rope_parameters,
is_neox_style=is_neox_style,
)
if not self.nope
else None
)
use_chunked_local_attn = not self.nope and config.attention_chunk_size
attn_cls = ChunkedLocalAttention if use_chunked_local_attn else Attention
self.attn = attn_cls(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
**(
{"attention_chunk_size": config.attention_chunk_size}
if use_chunked_local_attn
else {}
),
)
def _get_attn_scale(self, positions: torch.Tensor) -> torch.Tensor:
floor = torch.floor((positions + 1.0) / self.floor_scale)
attn_scale = torch.log(floor + 1.0) * self.attn_scale + 1.0
return attn_scale.unsqueeze(-1)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
if self.rotary_emb is not None:
q, k = self.rotary_emb(positions, q, k)
if self.qk_norm is not None:
# Normalization is applied on the head_dim dimension. The rest of
# the dimensions are collapsed into a single dimension to support
# custom rms_norm cuda kernel.
q = q.reshape(-1, self.head_dim)
q = self.qk_norm(q.float()).reshape(-1, self.q_size).to(q.dtype)
k = k.reshape(-1, self.head_dim)
k = self.qk_norm(k.float()).reshape(-1, self.kv_size).to(k.dtype)
# We are applying temperature tuning (https://arxiv.org/abs/2501.19399)
# to NoPE layers, where the inference-time temperature tuning function
# is customized to not affect short context
# while working at very long context
# https://arxiv.org/abs/2501.19399
#
# We should apply temperature tuning between (after) rotary / QK norm
# and (before) attention.
if self.attn_temperature_tuning and self.nope:
attn_scale = self._get_attn_scale(positions)
q = (q * attn_scale).to(q.dtype)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class Llama4DecoderLayer(nn.Module):
def __init__(
self,
vllm_config: VllmConfig,
prefix: str = "",
config: Llama4TextConfig | None = None,
) -> None:
super().__init__()
config = config or vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.layer_idx = extract_layer_index(prefix)
self.global_layer = config.no_rope_layers[self.layer_idx] == 0
self.hidden_size = config.hidden_size
max_position_embeddings = config.max_position_embeddings
self.self_attn = Llama4Attention(
config=config,
hidden_size=self.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
max_position_embeddings=max_position_embeddings,
quant_config=quant_config,
bias=False,
bias_o_proj=False,
cache_config=cache_config,
prefix=f"{prefix}.self_attn",
)
is_moe_layer = (
config.interleave_moe_layer_step > 0
and (self.layer_idx + 1) % config.interleave_moe_layer_step == 0
)
if is_moe_layer:
self.feed_forward = Llama4MoE(
vllm_config=vllm_config,
prefix=f"{prefix}.feed_forward",
)
else:
self.feed_forward = LlamaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size_mlp,
hidden_act="silu",
quant_config=quant_config,
bias=False,
prefix=f"{prefix}.feed_forward",
)
self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = RMSNorm(
config.hidden_size, eps=config.rms_norm_eps
)
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
residual: torch.Tensor | None,
) -> tuple[torch.Tensor, torch.Tensor]:
# Self Attention
if residual is None:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
else:
hidden_states, residual = self.input_layernorm(hidden_states, residual)
hidden_states = self.self_attn(positions=positions, hidden_states=hidden_states)
# Fully Connected
hidden_states, residual = self.post_attention_layernorm(hidden_states, residual)
hidden_states = self.feed_forward(hidden_states)
return hidden_states, residual
@support_torch_compile
class Llama4Model(LlamaModel):
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: type[Llama4DecoderLayer] = Llama4DecoderLayer,
):
self.num_experts = vllm_config.model_config.hf_config.num_local_experts
self.n_redundant_experts = (
vllm_config.parallel_config.eplb_config.num_redundant_experts
)
super().__init__(vllm_config=vllm_config, prefix=prefix, layer_type=layer_type)
def load_moe_expert_weights(
self,
name: str,
loaded_weight: torch.Tensor,
params_dict: dict[str, nn.Parameter],
loaded_params: set[str],
expert_params_mapping: list[tuple[str, str, int, str]],
fused: bool = True,
) -> bool:
"""
Load MoE expert weights.
Args:
name: The name of the weight to load.
loaded_weight: The weight to load.
params_dict: The dictionary of module parameters.
loaded_params: The set of already loaded parameters.
expert_params_mapping: The mapping of expert parameters. Must be
generated by SharedFusedMoE.make_expert_params_mapping().
fused: Whether the expert weights are fused into a single weight
tensor or are separate weight tensors for each expert.
When fused is True, loaded_weight should have shape of:
[num_experts, hidden_in, hidden_out] for gate/up/down proj and
[hidden_out, hidden_in] for the others like router.
When fused is False, loaded_weight should have shape of:
[hidden_out, hidden_in].
Returns:
True if loaded_weight is one of MoE weights and the MoE expert
weights are loaded successfully, False otherwise.
"""
# Whether the MoE expert weights are loaded successfully.
expert_param_loaded = False
# If fused is True, the loaded weight is in the layout of:
# [num_experts, hidden_in, hidden_out], so we must transpose the last
# two dimensions to match the expected layout of the parameters.
if fused and loaded_weight.ndim == 3:
loaded_weight = loaded_weight.transpose(-1, -2)
# If the gate_proj and up_proj weights are fused into a single
# weight tensor, we need to split the weight tensor into a tuple
# of two weight tensors along the hidden_out dimension.
if "experts.gate_up_proj" in name:
loaded_weight = loaded_weight.chunk(2, dim=-2)
# Iterate over all the expert parameters and load the weights if we find
# a match in weight name.
for param_name, weight_name, expert_id, shard_id in expert_params_mapping:
# Get a view of the loaded_weight to avoid modifying the original
# one across iterations.
new_loaded_weight = loaded_weight
# If expert weights are fused into a single weight tensor, remove
# the expert index from the expected weight name.
if fused:
# The string between e_str and proj_str is the expert index.
e_str, _, proj_str, _ = weight_name.split(".")
weight_name = f"{e_str}.{proj_str}"
param_name = f"{param_name}weight"
# Skip if the current weight is not one of the MoE weights.
if weight_name not in name:
continue
# Replace the weight name with the parameter name.
full_param_name = name.replace(weight_name, param_name)
# Skip if the current weight corresponds to a parameter that
# does not exist on the current PP (pipeline parallel) rank.
if is_pp_missing_parameter(name, self):
continue
# Skip if the current weight is for the bias.
if (
name.endswith(".bias") or name.endswith("_bias")
) and name not in params_dict:
continue
param = params_dict[full_param_name]
weight_loader = param.weight_loader
if fused:
# If the parameter is for w13 together, the corresponding weight
# will be a tuple, so we must select the correct weight
# depending on the shard id, which is either "w1" or "w3".
if "w13" in full_param_name:
assert shard_id in ["w1", "w3"]
shard_idx = 0 if shard_id == "w1" else 1
new_loaded_weight = new_loaded_weight[shard_idx]
# If EP (expert parallel) is enabled, update expert_id to the
# starting expert index for the current EP rank and extract the
# corresponding expert weights.
layer_idx = extract_layer_index(name)
expert_map = self.layers[layer_idx].feed_forward.experts.expert_map
if expert_map is not None:
local_expert_indices = (
(expert_map != -1)
.nonzero()
.flatten()
.to(new_loaded_weight.device)
)
new_loaded_weight = new_loaded_weight[local_expert_indices]
expert_id = local_expert_indices[0].item()
else:
# TODO: add EP support for non fused weights
pass
# Load the weight into the module parameter with corresponding
# shard id and expert id.
weight_loader(
param,
new_loaded_weight,
full_param_name,
shard_id=shard_id,
expert_id=expert_id,
)
loaded_params.add(full_param_name)
expert_param_loaded = True
return expert_param_loaded
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
# Name mapping from the parameter name to the shard name and
# corresponding shard id.
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
(".qkv_proj", ".q_proj", "q"),
(".qkv_proj", ".k_proj", "k"),
(".qkv_proj", ".v_proj", "v"),
(".gate_up_proj", ".gate_proj", 0),
(".gate_up_proj", ".up_proj", 1),
]
# Indicate whether the expert weights are fused into a single weight
# tensor.
fused_experts_params = False
# Expert parameter mapping for the case where the expert weights are
# not fused into a single weight tensor.
expert_params_mapping = SharedFusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="up_proj",
num_experts=self.num_experts,
num_redundant_experts=self.n_redundant_experts,
)
# Expert parameter mapping for the case where the expert weights are
# fused into a single weight tensor.
expert_params_mapping_fused = SharedFusedMoE.make_expert_params_mapping(
ckpt_gate_proj_name="gate_up_proj",
ckpt_down_proj_name="down_proj",
ckpt_up_proj_name="gate_up_proj",
num_experts=1,
)
# All the module parameters.
params_dict = dict(self.named_parameters())
# The module parameters that have been loaded.
loaded_params: set[str] = set()
# Iterate over all the weights and load them into module parameters.
for name, loaded_weight in weights:
# If the name contains "experts.gate_up_proj" or "experts.down_proj"
# without the expert indices, it means the expert weights are fused
# into a single weight tensor across all experts.
if "experts.gate_up_proj" in name or "experts.down_proj" in name:
fused_experts_params = True
expert_params_mapping = expert_params_mapping_fused
# If kv cache quantization scales exist and the weight name
# corresponds to one of the kv cache quantization scales, load
# them.
if self.quant_config is not None and (
scale_name := self.quant_config.get_cache_scale(name)
):
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
loaded_weight = (
loaded_weight if loaded_weight.dim() == 0 else loaded_weight[0]
)
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
# Iterate over stacked_params_mapping to check if the current weight
# is one of the stacked parameters. If so, load the weight with the
# corresponding shard id. Note that MoE weights are handled
# separately in the else block.
for param_name, weight_name, shard_id in stacked_params_mapping:
# Skip if the current weight is not one of the stacked
# parameters or if the current weight is a MoE weight.
if weight_name not in name or "experts" in name:
continue
# For ModelOpt checkpoints, we need to rename the self_attn
# weight/weight_scale names except for kv cache scales.
if not (
name.endswith((".k_scale", ".v_scale")) and "self_attn" in name
):
name = name.replace(weight_name, param_name)
# Skip if the current weight corresponds to a parameter that
# does not exist on the current PP (pipeline parallel) rank.
if is_pp_missing_parameter(name, self):
continue
# Remap kv cache scale names for ModelOpt checkpoints.
# TODO: ModelOpt should implement get_cache_scale() such that
# kv cache scale name remapping can be done there.
if name.endswith("scale"):
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
# Load the weight into the module parameter with corresponding
# shard id and exit the for loop and the else block.
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
if weight_loader == default_weight_loader:
weight_loader(param, loaded_weight)
else:
weight_loader(param, loaded_weight, shard_id)
loaded_params.add(name)
break
# Handle normal (non-stacked) weights and MoE weights.
else:
# First, try to load MoE weights using load_moe_expert_weights.
# If successful, move on to next loaded weight.
if self.load_moe_expert_weights(
name,
loaded_weight,
params_dict,
loaded_params,
expert_params_mapping,
fused=fused_experts_params,
):
continue
# Skip if the current weight corresponds to a parameter that
# does not exist on the current PP (pipeline parallel) rank.
if is_pp_missing_parameter(name, self):
continue
# Handle flat expert scale parameters that don't match
# per-expert patterns, i.e. one weight scale tensor for all
# experts.
scale_names = [
"w13_input_scale",
"w13_weight_scale",
"w2_input_scale",
"w2_weight_scale",
]
if "experts." in name and any(
scale_name in name for scale_name in scale_names
):
param = params_dict[name]
weight_loader = getattr(
param, "weight_loader", default_weight_loader
)
# If weight loader supports special moe loading, use it to
# avoid expensive runtime reflection
if getattr(weight_loader, "supports_moe_loading", False):
# Map the weight name to the corresponding shard id.
shard_id = "w2" if "w2_" in name else "w1"
# Transpose if weight scales are FP8 block scales with
# three dimensions:
# [num_experts, hidden_in, hidden_out].
if (
name.endswith("weight_scale")
and loaded_weight.dtype == torch.float8_e4m3fn
and loaded_weight.ndim == 3
):
loaded_weight = loaded_weight.transpose(-1, -2)
# Load the weight into the module parameter with
# corresponding shard id and expert id.
weight_loader(
param, loaded_weight, name, shard_id=shard_id, expert_id=0
)
else:
# Regular weight loader (handles both
# param.weight_loader and default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
continue
# Handle normal (non-stacked, non-MoE) weights.
param = params_dict[name]
weight_loader = getattr(param, "weight_loader", default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
# Finally, return the set of loaded parameters.
return loaded_params
class Llama4ForCausalLM(LlamaForCausalLM, MixtureOfExperts):
packed_modules_mapping = {
"qkv_proj": ["q_proj", "k_proj", "v_proj"],
"gate_up_proj": ["gate_proj", "up_proj"],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
# update temperature tuning config from generation config
gen_config = vllm_config.model_config.try_get_generation_config()
gen_config.update(vllm_config.model_config.override_generation_config)
# enable temperature tuning by default when max_model_len > 32K
default_attn_temperature_tuning = vllm_config.model_config.max_model_len > 32768
vllm_config.model_config.hf_config.attn_temperature_tuning = gen_config.get(
"attn_temperature_tuning", default_attn_temperature_tuning
)
super().__init__(
vllm_config=vllm_config, prefix=prefix, layer_type=Llama4DecoderLayer
)
# Set MoE hyperparameters
self.set_moe_parameters()
def set_moe_parameters(self):
self.expert_weights = []
self.moe_layers = []
example_moe = None
for layer in self.model.layers:
if isinstance(layer, PPMissingLayer):
continue
assert isinstance(layer, Llama4DecoderLayer)
if isinstance(layer.feed_forward, Llama4MoE):
# Pick last one layer since the first ones may be dense layers.
example_moe = layer.feed_forward
self.moe_layers.append(layer.feed_forward.experts)
if example_moe is None:
self.num_moe_layers = 0
self.num_expert_groups = 0
self.num_logical_experts = 0
self.num_physical_experts = 0
self.num_local_physical_experts = 0
self.num_routed_experts = 0
self.num_shared_experts = 0
self.num_redundant_experts = 0
logger.warning("No Llama4MoE layer found in model.layers.")
else:
self.num_moe_layers = len(self.moe_layers)
self.num_expert_groups = 1
self.num_logical_experts = example_moe.n_logical_experts
self.num_physical_experts = example_moe.n_physical_experts
self.num_local_physical_experts = example_moe.n_local_physical_experts
self.num_routed_experts = example_moe.n_routed_experts
self.num_shared_experts = example_moe.n_shared_experts
self.num_redundant_experts = example_moe.n_redundant_experts
def update_physical_experts_metadata(
self,
num_physical_experts: int,
num_local_physical_experts: int,
) -> None:
assert self.num_local_physical_experts == num_local_physical_experts
self.num_physical_experts = num_physical_experts
self.num_local_physical_experts = num_local_physical_experts
self.num_redundant_experts = num_physical_experts - self.num_logical_experts
for layer in self.model.layers:
if isinstance(layer, PPMissingLayer):
continue
if isinstance(layer.feed_forward, Llama4MoE):
moe = layer.feed_forward
moe.n_local_physical_experts = num_local_physical_experts
moe.n_physical_experts = num_physical_experts
moe.n_redundant_experts = self.num_redundant_experts
moe.experts.update_expert_map()
def _init_model(
self,
vllm_config: VllmConfig,
prefix: str = "",
layer_type: type[Llama4DecoderLayer] = Llama4DecoderLayer,
):
return Llama4Model(
vllm_config=vllm_config, prefix=prefix, layer_type=layer_type
)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(
self,
skip_prefixes=(["lm_head."] if self.config.tie_word_embeddings else None),
)
weights = [
self.permute_qk_weight_for_rotary(name, loaded_weight)
for name, loaded_weight in weights
]
return loader.load_weights(weights)
def permute_qk_weight_for_rotary(
self,
name: str,
loaded_weight: torch.Tensor,
) -> tuple[str, torch.Tensor]:
# Helper function to permute the weight's channels
def permute(w: torch.Tensor, n_heads: int, is_weight_scale: bool):
# Calculate the expected shape of the weight.
# Do not rely on w's shape, as it may be in another layout.
attn_in = self.config.head_dim * n_heads
attn_out = self.config.hidden_size
# If the weight is FP4 packed as uint8, we need to divide attn_out
# by 2.
if w.dtype == torch.uint8 and w.shape[1] * 2 == attn_out:
attn_out = attn_out // 2
# If the weight is a weight scale, we need to divide attn_out by
# block size, which is currently 16.
elif (
w.dtype == torch.float8_e4m3fn
and is_weight_scale
and w.shape[1] * 16 == attn_out
):
attn_out = attn_out // 16
return (
w.view(n_heads, attn_in // n_heads // 2, 2, attn_out)
.transpose(1, 2)
.reshape(attn_in, attn_out)
)
modules = name.split(".")
# Permute Q/K weights and weight block scales for rotary embedding
is_weight = modules[-1] == "weight"
is_nvfp4_weight_scale = (
modules[-1] == "weight_scale" and loaded_weight.dtype == torch.float8_e4m3fn
)
if is_weight or is_nvfp4_weight_scale:
if "wk" in modules or "k_proj" in modules:
loaded_weight = permute(
loaded_weight,
self.config.num_key_value_heads,
is_nvfp4_weight_scale,
)
elif "wq" in modules or "q_proj" in modules:
loaded_weight = permute(
loaded_weight,
self.config.num_attention_heads,
is_nvfp4_weight_scale,
)
return name, loaded_weight