Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

323 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from enum import IntEnum
from typing import List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import PretrainedConfig
from typing_extensions import assert_never
from vllm.config import PoolerConfig
from vllm.model_executor.pooling_metadata import (PoolingMetadata,
PoolingTensors)
from vllm.sequence import PoolerOutput, PoolingSequenceGroupOutput
from vllm.transformers_utils.config import (
get_cross_encoder_activation_function)
class PoolingType(IntEnum):
"""Enumeration for different types of pooling methods."""
LAST = 0
ALL = 1
CLS = 2
STEP = 3
MEAN = 4
class SimplePooler(nn.Module):
"""A layer that pools specific information from hidden states.
This layer does the following:
1. Extracts specific tokens or aggregates data based on pooling method.
2. Normalizes output if specified.
3. Returns structured results as `PoolerOutput`.
Attributes:
pooling_type: The type of pooling to use.
normalize: Whether to normalize the pooled data.
"""
@staticmethod
def from_pooling_type(
pooling_type: PoolingType,
*,
normalize: bool,
softmax: bool,
step_tag_id: Optional[int] = None,
returned_token_ids: Optional[List[int]] = None,
) -> "SimplePooler":
if pooling_type == PoolingType.LAST:
assert step_tag_id is None and returned_token_ids is None
return LastPool(normalize=normalize, softmax=softmax)
if pooling_type == PoolingType.ALL:
assert step_tag_id is None and returned_token_ids is None
return AllPool(normalize=normalize, softmax=softmax)
if pooling_type == PoolingType.CLS:
assert step_tag_id is None and returned_token_ids is None
return CLSPool(normalize=normalize, softmax=softmax)
if pooling_type == PoolingType.MEAN:
assert step_tag_id is None and returned_token_ids is None
return MeanPool(normalize=normalize, softmax=softmax)
if pooling_type == PoolingType.STEP:
return StepPool(normalize=normalize,
softmax=softmax,
step_tag_id=step_tag_id,
returned_token_ids=returned_token_ids)
assert_never(pooling_type)
def __init__(self, *, normalize: bool, softmax: bool) -> None:
super().__init__()
self.head = PoolerHead(normalize=normalize, softmax=softmax)
def get_prompt_lens(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> torch.Tensor:
return PoolingTensors.from_pooling_metadata(
pooling_metadata, hidden_states.device).prompt_lens
def extract_states(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Union[list[torch.Tensor], torch.Tensor]:
raise NotImplementedError
def build_output(self, data: torch.Tensor) -> PoolingSequenceGroupOutput:
return PoolingSequenceGroupOutput(data)
def forward(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> PoolerOutput:
pooled_data = self.extract_states(hidden_states, pooling_metadata)
pooled_data = self.head(pooled_data)
pooled_outputs = [self.build_output(data) for data in pooled_data]
return PoolerOutput(outputs=pooled_outputs)
class CLSPool(SimplePooler):
def extract_states(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Union[list[torch.Tensor], torch.Tensor]:
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
first_token_flat_indices = torch.zeros_like(prompt_lens)
first_token_flat_indices[1:] += torch.cumsum(prompt_lens, dim=0)[:-1]
return hidden_states[first_token_flat_indices]
class LastPool(SimplePooler):
def extract_states(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Union[list[torch.Tensor], torch.Tensor]:
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
last_token_flat_indices = torch.cumsum(prompt_lens, dim=0) - 1
return hidden_states[last_token_flat_indices]
class AllPool(SimplePooler):
def extract_states(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Union[list[torch.Tensor], torch.Tensor]:
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
offset = 0
pooled_data = list[torch.Tensor]()
for prompt_len in prompt_lens:
pooled_data.append(hidden_states[offset:offset + prompt_len])
offset += prompt_len
return pooled_data
class MeanPool(SimplePooler):
def extract_states(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Union[list[torch.Tensor], torch.Tensor]:
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
cumsum = torch.cumsum(hidden_states, dim=0)
start_indices = torch.cat([
torch.tensor([0], device=hidden_states.device),
torch.cumsum(prompt_lens[:-1], dim=0)
])
end_indices = torch.cumsum(prompt_lens, dim=0)
return (cumsum[end_indices - 1] - cumsum[start_indices] +
hidden_states[start_indices]) / prompt_lens.unsqueeze(1)
class StepPool(SimplePooler):
def __init__(
self,
*,
normalize: bool,
softmax: bool,
step_tag_id: Optional[int] = None,
returned_token_ids: Optional[List[int]] = None,
):
super().__init__(normalize=normalize, softmax=softmax)
self.step_tag_id = step_tag_id
self.returned_token_ids = returned_token_ids
def extract_states(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> Union[list[torch.Tensor], torch.Tensor]:
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
returned_token_ids = self.returned_token_ids
if returned_token_ids is not None and len(returned_token_ids) > 0:
hidden_states = hidden_states[:, returned_token_ids]
step_tag_id = self.step_tag_id
offset = 0
pooled_data = list[torch.Tensor]()
for prompt_len, seq_data_i in zip(prompt_lens,
pooling_metadata.seq_data.values()):
pooled_data_i = hidden_states[offset:offset + prompt_len]
if step_tag_id is not None:
token_ids = torch.tensor(seq_data_i.prompt_token_ids)
pooled_data_i = pooled_data_i[token_ids == step_tag_id]
offset += prompt_len
pooled_data.append(pooled_data_i)
return pooled_data
class PoolerHead(nn.Module):
def __init__(self, *, normalize: bool, softmax: bool) -> None:
super().__init__()
self.normalize = normalize
self.softmax = softmax
def forward(self, pooled_data: Union[list[torch.Tensor], torch.Tensor]):
if self.normalize:
if isinstance(pooled_data, list):
pooled_data = [
F.normalize(data, p=2, dim=1) for data in pooled_data
]
else:
pooled_data = F.normalize(pooled_data, p=2, dim=1)
if self.softmax:
if isinstance(pooled_data, list):
pooled_data = [F.softmax(data, dim=-1) for data in pooled_data]
else:
pooled_data = F.softmax(pooled_data, dim=-1)
return pooled_data
class Pooler(nn.Module):
@classmethod
def from_config_with_defaults(
cls,
pooler_config: PoolerConfig,
pooling_type: PoolingType,
normalize: bool,
softmax: bool,
step_tag_id: Optional[int] = None,
returned_token_ids: Optional[List[int]] = None,
) -> SimplePooler:
return SimplePooler.from_pooling_type(
pooling_type=PoolingType[pooler_config.pooling_type]
if pooler_config.pooling_type is not None else pooling_type,
normalize=pooler_config.normalize
if pooler_config.normalize is not None else normalize,
softmax=pooler_config.softmax
if pooler_config.softmax is not None else softmax,
step_tag_id=pooler_config.step_tag_id
if pooler_config.step_tag_id is not None else step_tag_id,
returned_token_ids=pooler_config.returned_token_ids
if pooler_config.returned_token_ids is not None else
returned_token_ids,
)
class CrossEncodingPooler(nn.Module):
"""A layer that pools specific information from hidden states.
This layer does the following:
1. Extracts specific tokens or aggregates data based on pooling method.
2. Normalizes output if specified.
3. Returns structured results as `PoolerOutput`.
Attributes:
pooling_type: The type of pooling to use.
normalize: Whether to normalize the pooled data.
"""
def __init__(
self,
config: PretrainedConfig,
classifier: nn.Module,
pooler: Optional[nn.Module] = None,
):
super().__init__()
self.classifier = classifier
self.pooler = pooler
self.default_activation_function = \
get_cross_encoder_activation_function(config)
def forward(
self,
hidden_states: torch.Tensor,
pooling_metadata: PoolingMetadata,
) -> PoolerOutput:
"""Pools sentence pair scores from the hidden_states."""
prompt_lens = PoolingTensors.from_pooling_metadata(
pooling_metadata, hidden_states.device).prompt_lens
offset = 0
pooled_data_lst = []
for prompt_len in prompt_lens:
pooled_data_i = hidden_states[offset:offset + prompt_len]
if self.pooler is not None:
final_shape_tensor = self.pooler(pooled_data_i)
else:
final_shape_tensor = self.classifier(pooled_data_i)
pooled_data_lst.append(final_shape_tensor)
offset += prompt_len
pooled_output = torch.stack(pooled_data_lst)
if self.pooler is not None:
# apply classifier once on the full batch if possible
pooled_output = self.classifier(pooled_output)
scores = self.default_activation_function(pooled_output).squeeze(-1)
pooled_outputs = [PoolingSequenceGroupOutput(data) for data in scores]
return PoolerOutput(outputs=pooled_outputs)