mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2026-01-07 20:57:45 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
323 lines
11 KiB
Python
323 lines
11 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
from enum import IntEnum
|
|
from typing import List, Optional, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from transformers import PretrainedConfig
|
|
from typing_extensions import assert_never
|
|
|
|
from vllm.config import PoolerConfig
|
|
from vllm.model_executor.pooling_metadata import (PoolingMetadata,
|
|
PoolingTensors)
|
|
from vllm.sequence import PoolerOutput, PoolingSequenceGroupOutput
|
|
from vllm.transformers_utils.config import (
|
|
get_cross_encoder_activation_function)
|
|
|
|
|
|
class PoolingType(IntEnum):
|
|
"""Enumeration for different types of pooling methods."""
|
|
LAST = 0
|
|
ALL = 1
|
|
CLS = 2
|
|
STEP = 3
|
|
MEAN = 4
|
|
|
|
|
|
class SimplePooler(nn.Module):
|
|
"""A layer that pools specific information from hidden states.
|
|
|
|
This layer does the following:
|
|
1. Extracts specific tokens or aggregates data based on pooling method.
|
|
2. Normalizes output if specified.
|
|
3. Returns structured results as `PoolerOutput`.
|
|
|
|
Attributes:
|
|
pooling_type: The type of pooling to use.
|
|
normalize: Whether to normalize the pooled data.
|
|
"""
|
|
|
|
@staticmethod
|
|
def from_pooling_type(
|
|
pooling_type: PoolingType,
|
|
*,
|
|
normalize: bool,
|
|
softmax: bool,
|
|
step_tag_id: Optional[int] = None,
|
|
returned_token_ids: Optional[List[int]] = None,
|
|
) -> "SimplePooler":
|
|
if pooling_type == PoolingType.LAST:
|
|
assert step_tag_id is None and returned_token_ids is None
|
|
return LastPool(normalize=normalize, softmax=softmax)
|
|
if pooling_type == PoolingType.ALL:
|
|
assert step_tag_id is None and returned_token_ids is None
|
|
return AllPool(normalize=normalize, softmax=softmax)
|
|
if pooling_type == PoolingType.CLS:
|
|
assert step_tag_id is None and returned_token_ids is None
|
|
return CLSPool(normalize=normalize, softmax=softmax)
|
|
if pooling_type == PoolingType.MEAN:
|
|
assert step_tag_id is None and returned_token_ids is None
|
|
return MeanPool(normalize=normalize, softmax=softmax)
|
|
if pooling_type == PoolingType.STEP:
|
|
return StepPool(normalize=normalize,
|
|
softmax=softmax,
|
|
step_tag_id=step_tag_id,
|
|
returned_token_ids=returned_token_ids)
|
|
|
|
assert_never(pooling_type)
|
|
|
|
def __init__(self, *, normalize: bool, softmax: bool) -> None:
|
|
super().__init__()
|
|
|
|
self.head = PoolerHead(normalize=normalize, softmax=softmax)
|
|
|
|
def get_prompt_lens(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> torch.Tensor:
|
|
return PoolingTensors.from_pooling_metadata(
|
|
pooling_metadata, hidden_states.device).prompt_lens
|
|
|
|
def extract_states(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> Union[list[torch.Tensor], torch.Tensor]:
|
|
raise NotImplementedError
|
|
|
|
def build_output(self, data: torch.Tensor) -> PoolingSequenceGroupOutput:
|
|
return PoolingSequenceGroupOutput(data)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> PoolerOutput:
|
|
pooled_data = self.extract_states(hidden_states, pooling_metadata)
|
|
pooled_data = self.head(pooled_data)
|
|
pooled_outputs = [self.build_output(data) for data in pooled_data]
|
|
return PoolerOutput(outputs=pooled_outputs)
|
|
|
|
|
|
class CLSPool(SimplePooler):
|
|
|
|
def extract_states(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> Union[list[torch.Tensor], torch.Tensor]:
|
|
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
|
|
|
|
first_token_flat_indices = torch.zeros_like(prompt_lens)
|
|
first_token_flat_indices[1:] += torch.cumsum(prompt_lens, dim=0)[:-1]
|
|
return hidden_states[first_token_flat_indices]
|
|
|
|
|
|
class LastPool(SimplePooler):
|
|
|
|
def extract_states(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> Union[list[torch.Tensor], torch.Tensor]:
|
|
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
|
|
|
|
last_token_flat_indices = torch.cumsum(prompt_lens, dim=0) - 1
|
|
return hidden_states[last_token_flat_indices]
|
|
|
|
|
|
class AllPool(SimplePooler):
|
|
|
|
def extract_states(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> Union[list[torch.Tensor], torch.Tensor]:
|
|
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
|
|
|
|
offset = 0
|
|
pooled_data = list[torch.Tensor]()
|
|
for prompt_len in prompt_lens:
|
|
pooled_data.append(hidden_states[offset:offset + prompt_len])
|
|
offset += prompt_len
|
|
|
|
return pooled_data
|
|
|
|
|
|
class MeanPool(SimplePooler):
|
|
|
|
def extract_states(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> Union[list[torch.Tensor], torch.Tensor]:
|
|
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
|
|
|
|
cumsum = torch.cumsum(hidden_states, dim=0)
|
|
start_indices = torch.cat([
|
|
torch.tensor([0], device=hidden_states.device),
|
|
torch.cumsum(prompt_lens[:-1], dim=0)
|
|
])
|
|
end_indices = torch.cumsum(prompt_lens, dim=0)
|
|
return (cumsum[end_indices - 1] - cumsum[start_indices] +
|
|
hidden_states[start_indices]) / prompt_lens.unsqueeze(1)
|
|
|
|
|
|
class StepPool(SimplePooler):
|
|
|
|
def __init__(
|
|
self,
|
|
*,
|
|
normalize: bool,
|
|
softmax: bool,
|
|
step_tag_id: Optional[int] = None,
|
|
returned_token_ids: Optional[List[int]] = None,
|
|
):
|
|
super().__init__(normalize=normalize, softmax=softmax)
|
|
|
|
self.step_tag_id = step_tag_id
|
|
self.returned_token_ids = returned_token_ids
|
|
|
|
def extract_states(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> Union[list[torch.Tensor], torch.Tensor]:
|
|
prompt_lens = self.get_prompt_lens(hidden_states, pooling_metadata)
|
|
|
|
returned_token_ids = self.returned_token_ids
|
|
if returned_token_ids is not None and len(returned_token_ids) > 0:
|
|
hidden_states = hidden_states[:, returned_token_ids]
|
|
|
|
step_tag_id = self.step_tag_id
|
|
|
|
offset = 0
|
|
pooled_data = list[torch.Tensor]()
|
|
for prompt_len, seq_data_i in zip(prompt_lens,
|
|
pooling_metadata.seq_data.values()):
|
|
pooled_data_i = hidden_states[offset:offset + prompt_len]
|
|
if step_tag_id is not None:
|
|
token_ids = torch.tensor(seq_data_i.prompt_token_ids)
|
|
pooled_data_i = pooled_data_i[token_ids == step_tag_id]
|
|
|
|
offset += prompt_len
|
|
pooled_data.append(pooled_data_i)
|
|
|
|
return pooled_data
|
|
|
|
|
|
class PoolerHead(nn.Module):
|
|
|
|
def __init__(self, *, normalize: bool, softmax: bool) -> None:
|
|
super().__init__()
|
|
|
|
self.normalize = normalize
|
|
self.softmax = softmax
|
|
|
|
def forward(self, pooled_data: Union[list[torch.Tensor], torch.Tensor]):
|
|
if self.normalize:
|
|
if isinstance(pooled_data, list):
|
|
pooled_data = [
|
|
F.normalize(data, p=2, dim=1) for data in pooled_data
|
|
]
|
|
else:
|
|
pooled_data = F.normalize(pooled_data, p=2, dim=1)
|
|
|
|
if self.softmax:
|
|
if isinstance(pooled_data, list):
|
|
pooled_data = [F.softmax(data, dim=-1) for data in pooled_data]
|
|
else:
|
|
pooled_data = F.softmax(pooled_data, dim=-1)
|
|
|
|
return pooled_data
|
|
|
|
|
|
class Pooler(nn.Module):
|
|
|
|
@classmethod
|
|
def from_config_with_defaults(
|
|
cls,
|
|
pooler_config: PoolerConfig,
|
|
pooling_type: PoolingType,
|
|
normalize: bool,
|
|
softmax: bool,
|
|
step_tag_id: Optional[int] = None,
|
|
returned_token_ids: Optional[List[int]] = None,
|
|
) -> SimplePooler:
|
|
return SimplePooler.from_pooling_type(
|
|
pooling_type=PoolingType[pooler_config.pooling_type]
|
|
if pooler_config.pooling_type is not None else pooling_type,
|
|
normalize=pooler_config.normalize
|
|
if pooler_config.normalize is not None else normalize,
|
|
softmax=pooler_config.softmax
|
|
if pooler_config.softmax is not None else softmax,
|
|
step_tag_id=pooler_config.step_tag_id
|
|
if pooler_config.step_tag_id is not None else step_tag_id,
|
|
returned_token_ids=pooler_config.returned_token_ids
|
|
if pooler_config.returned_token_ids is not None else
|
|
returned_token_ids,
|
|
)
|
|
|
|
|
|
class CrossEncodingPooler(nn.Module):
|
|
"""A layer that pools specific information from hidden states.
|
|
|
|
This layer does the following:
|
|
1. Extracts specific tokens or aggregates data based on pooling method.
|
|
2. Normalizes output if specified.
|
|
3. Returns structured results as `PoolerOutput`.
|
|
|
|
Attributes:
|
|
pooling_type: The type of pooling to use.
|
|
normalize: Whether to normalize the pooled data.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
config: PretrainedConfig,
|
|
classifier: nn.Module,
|
|
pooler: Optional[nn.Module] = None,
|
|
):
|
|
super().__init__()
|
|
self.classifier = classifier
|
|
self.pooler = pooler
|
|
self.default_activation_function = \
|
|
get_cross_encoder_activation_function(config)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
pooling_metadata: PoolingMetadata,
|
|
) -> PoolerOutput:
|
|
"""Pools sentence pair scores from the hidden_states."""
|
|
|
|
prompt_lens = PoolingTensors.from_pooling_metadata(
|
|
pooling_metadata, hidden_states.device).prompt_lens
|
|
|
|
offset = 0
|
|
pooled_data_lst = []
|
|
for prompt_len in prompt_lens:
|
|
pooled_data_i = hidden_states[offset:offset + prompt_len]
|
|
|
|
if self.pooler is not None:
|
|
final_shape_tensor = self.pooler(pooled_data_i)
|
|
else:
|
|
final_shape_tensor = self.classifier(pooled_data_i)
|
|
|
|
pooled_data_lst.append(final_shape_tensor)
|
|
offset += prompt_len
|
|
|
|
pooled_output = torch.stack(pooled_data_lst)
|
|
|
|
if self.pooler is not None:
|
|
# apply classifier once on the full batch if possible
|
|
pooled_output = self.classifier(pooled_output)
|
|
|
|
scores = self.default_activation_function(pooled_output).squeeze(-1)
|
|
|
|
pooled_outputs = [PoolingSequenceGroupOutput(data) for data in scores]
|
|
return PoolerOutput(outputs=pooled_outputs)
|