mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 18:15:01 +08:00
83 lines
2.8 KiB
Python
83 lines
2.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
from typing import Any
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from tests.conftest import HfRunner
|
|
from tests.models.utils import LASTPoolingRerankModelInfo, RerankModelInfo
|
|
|
|
from .mteb_utils import mteb_test_rerank_models
|
|
|
|
mxbai_rerank_hf_overrides = {
|
|
"architectures": ["Qwen2ForSequenceClassification"],
|
|
"classifier_from_token": ["0", "1"],
|
|
"method": "from_2_way_softmax",
|
|
}
|
|
|
|
RERANK_MODELS = [
|
|
LASTPoolingRerankModelInfo(
|
|
"mixedbread-ai/mxbai-rerank-base-v2",
|
|
architecture="Qwen2ForSequenceClassification",
|
|
hf_overrides=mxbai_rerank_hf_overrides,
|
|
mteb_score=0.273,
|
|
enable_test=True,
|
|
),
|
|
LASTPoolingRerankModelInfo(
|
|
"mixedbread-ai/mxbai-rerank-large-v2",
|
|
architecture="Qwen2ForSequenceClassification",
|
|
hf_overrides=mxbai_rerank_hf_overrides,
|
|
enable_test=False,
|
|
),
|
|
]
|
|
|
|
|
|
class MxbaiRerankerHfRunner(HfRunner):
|
|
def __init__(
|
|
self, model_name: str, dtype: str = "auto", *args: Any, **kwargs: Any
|
|
) -> None:
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
super().__init__(model_name, dtype, auto_cls=AutoModelForCausalLM)
|
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
|
|
self.yes_loc = self.tokenizer.convert_tokens_to_ids("1")
|
|
self.no_loc = self.tokenizer.convert_tokens_to_ids("0")
|
|
|
|
def predict(self, prompts: list[list[str]], *args, **kwargs) -> torch.Tensor:
|
|
def process_inputs(pairs):
|
|
inputs = self.tokenizer(
|
|
pairs,
|
|
padding=False,
|
|
truncation="longest_first",
|
|
return_attention_mask=False,
|
|
)
|
|
for i, ele in enumerate(inputs["input_ids"]):
|
|
inputs["input_ids"][i] = ele
|
|
inputs = self.tokenizer.pad(inputs, padding=True, return_tensors="pt")
|
|
for key in inputs:
|
|
inputs[key] = inputs[key].to(self.model.device)
|
|
return inputs
|
|
|
|
@torch.no_grad()
|
|
def compute_logits(inputs):
|
|
logits = self.model(**inputs).logits[:, -1, :]
|
|
yes_logits = logits[:, self.yes_loc]
|
|
no_logits = logits[:, self.no_loc]
|
|
logits = yes_logits - no_logits
|
|
scores = logits.float().sigmoid()
|
|
return scores
|
|
|
|
scores = []
|
|
for prompt in prompts:
|
|
inputs = process_inputs([prompt])
|
|
score = compute_logits(inputs)
|
|
scores.append(score[0].item())
|
|
return torch.Tensor(scores)
|
|
|
|
|
|
@pytest.mark.parametrize("model_info", RERANK_MODELS)
|
|
def test_rerank_models_mteb(vllm_runner, model_info: RerankModelInfo) -> None:
|
|
mteb_test_rerank_models(MxbaiRerankerHfRunner, vllm_runner, model_info)
|