Yong Hoon Shin cb293f6a79
[V1] Enable prefill optimization for Gemma3n (#22628)
Signed-off-by: Yong Hoon Shin <yhshin@meta.com>
2025-08-28 14:54:30 -07:00

1120 lines
44 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# Copyright 2025 The vLLM team.
# Copyright 2025 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections.abc import Iterable
from typing import Optional, Union
import torch
from torch import nn
from transformers.models.gemma3n.configuration_gemma3n import Gemma3nTextConfig
from vllm.attention import Attention
from vllm.compilation.backends import set_model_tag
from vllm.compilation.decorators import support_torch_compile
from vllm.config import CacheConfig, VllmConfig
from vllm.distributed import get_tensor_model_parallel_world_size
from vllm.forward_context import get_forward_context
from vllm.logger import init_logger
from vllm.model_executor.layers.activation import (_ACTIVATION_REGISTRY,
GeluAndMul,
GeluAndMulSparse)
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.layers.linear import (ColumnParallelLinear,
MergedColumnParallelLinear,
QKVParallelLinear,
ReplicatedLinear,
RowParallelLinear)
from vllm.model_executor.layers.logits_processor import LogitsProcessor
from vllm.model_executor.layers.quantization import QuantizationConfig
from vllm.model_executor.layers.rotary_embedding import get_rope
from vllm.model_executor.layers.vocab_parallel_embedding import (
VocabParallelEmbedding)
from vllm.model_executor.model_loader.weight_utils import (
default_weight_loader, maybe_remap_kv_scale_name)
from vllm.model_executor.sampling_metadata import SamplingMetadata
from vllm.sequence import IntermediateTensors
from vllm.v1.attention.backends.utils import KVSharingFastPrefillMetadata
from .interfaces import SupportsQuant
from .utils import (AutoWeightsLoader, extract_layer_index,
is_pp_missing_parameter, make_layers, maybe_prefix)
logger = init_logger(__name__)
class Gemma3nAltUp(nn.Module):
"""Alternating updates (Altup)
The AltUp module wraps transformer layers. The `predict` step modifies the
input to the transformer layer, and the `correct` step propagates the output
of the transformer layer to the sparsely updated dimensions.
See more in the research paper:
https://proceedings.neurips.cc/paper_files/paper/2023/file/f2059277ac6ce66e7e5543001afa8bb5-Paper-Conference.pdf
"""
def __init__(
self,
hidden_size: int,
rms_norm_eps: float,
altup_num_inputs: int,
altup_coef_clip: float,
altup_active_idx: int,
quant_config: QuantizationConfig,
prefix: str,
):
super().__init__()
self.altup_num_inputs = altup_num_inputs
self.altup_active_idx = altup_active_idx
self.altup_coef_clip = altup_coef_clip
self.correction_coefs = ReplicatedLinear(
altup_num_inputs,
altup_num_inputs,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.correction_coefs",
return_bias=False,
)
self.prediction_coefs = ReplicatedLinear(
altup_num_inputs,
altup_num_inputs**2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.prediction_coefs",
return_bias=False,
)
self.modality_router = ReplicatedLinear(
hidden_size,
altup_num_inputs,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.modality_router",
return_bias=False,
)
self.router_norm = RMSNorm(
hidden_size=hidden_size,
eps=rms_norm_eps,
)
self.router_input_scale = torch.tensor(
hidden_size**-1.0, dtype=self.modality_router.weight.dtype)
self.correct_output_scale = nn.Parameter(
torch.zeros(hidden_size, dtype=torch.float32))
def _compute_router_modalities(self, x: torch.Tensor) -> torch.Tensor:
router_inputs = self.router_norm(x) * self.router_input_scale
routed = self.modality_router(router_inputs)
return torch.tanh(routed.float()).type_as(x)
def scale_corrected_output(self, corrected: torch.Tensor) -> torch.Tensor:
return (corrected.type_as(self.correct_output_scale) *
self.correct_output_scale).type_as(corrected)
def predict(self, hidden_states: torch.Tensor) -> torch.Tensor:
# hidden: [altup_num_inputs, num_tokens, hidden_size]
# modalities: [num_tokens, num_altup_inputs]
# all_coefs: [num_tokens, num_altup_inputs ** 2]
modalities = self._compute_router_modalities(
hidden_states[self.altup_active_idx])
all_coefs = self.prediction_coefs(modalities)
# Reshape and transpose the 2D matrix for the matmul.
# all_coefs_T: [num_tokens, num_altup_inputs, num_altup_inputs]
all_coefs_T = all_coefs.reshape(
-1,
self.altup_num_inputs,
self.altup_num_inputs,
).permute(0, 2, 1)
# hidden_states to [num_tokens, hidden_size, altup_num_inputs]
predictions = torch.matmul(hidden_states.permute(1, 2, 0), all_coefs_T)
# [altup_num_inputs, num_tokens, hidden_size]
predictions = predictions.permute(2, 0, 1)
predictions += hidden_states
return predictions.contiguous()
def correct(self, predictions: torch.Tensor,
activated: torch.Tensor) -> torch.Tensor:
# predictions: [altup_num_inputs, num_tokens, hidden_size]
# activated: [num_tokens, hidden_size]
# modalities: [num_tokens, altup_num_inputs]
modalities = self._compute_router_modalities(activated)
# innovation: [num_tokens, altup_num_inputs]
innovation = activated - predictions[self.altup_active_idx]
# innovation: [altup_num_inputs, num_tokens, hidden_size]
innovation = innovation.repeat(self.altup_num_inputs, 1, 1)
# Permute to [altup_num_inputs, num_tokens] as the last dim
# is a scalar applied to each altup input and expand on
# num_tokens dim for broadcastability over hidden_size.
# all_coefs: [num_tokens, altup_num_inputs]
all_coefs = self.correction_coefs(modalities) + 1.0
# all_coefs: [altup_num_inputs, num_tokens, 1]
all_coefs = all_coefs.T.unsqueeze(-1)
# Elementwise (broadcast over hidden_size).
corrected = torch.mul(innovation, all_coefs)
corrected += predictions
return corrected.contiguous()
class Gemma3nLaurelBlock(nn.Module):
"""Learned Augmented Residual Layer"""
def __init__(
self,
hidden_size: int,
laurel_rank: int,
rms_norm_eps: float,
*,
quant_config: Optional[QuantizationConfig] = None,
prefix: str,
) -> None:
super().__init__()
self.linear_left = ColumnParallelLinear(
hidden_size,
laurel_rank,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.linear_left",
return_bias=False,
)
self.linear_right = RowParallelLinear(
laurel_rank,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.linear_right",
return_bias=False,
)
self.post_laurel_norm = RMSNorm(
hidden_size=hidden_size,
eps=rms_norm_eps,
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
laurel_x = self.linear_left(x)
laurel_x = self.linear_right(laurel_x)
normed_laurel_x = self.post_laurel_norm(laurel_x)
return x + normed_laurel_x
class Gemma3nMLP(nn.Module):
def __init__(
self,
hidden_size: int,
intermediate_size: int,
hidden_activation: str,
activation_sparsity: float = 0.0,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
if hidden_activation != "gelu_pytorch_tanh":
raise ValueError(
"Gemma3 uses `gelu_pytorch_tanh` as the hidden activation "
"function. Please set `hidden_act` and `hidden_activation` to "
"`gelu_pytorch_tanh`.")
self.act_fn = GeluAndMulSparse(
activation_sparsity=activation_sparsity,
approximate="tanh") if activation_sparsity > 0.0 else GeluAndMul(
approximate="tanh")
def forward(self, x: torch.Tensor) -> torch.Tensor:
gate_up, _ = self.gate_up_proj(x)
x = self.act_fn(gate_up)
x, _ = self.down_proj(x)
return x
class Gemma3nAttention(nn.Module):
def __init__(self,
config: Gemma3nTextConfig,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
max_position_embeddings: int,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "") -> None:
super().__init__()
self.config = config
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
self.total_num_heads = num_heads
assert self.total_num_heads % tp_size == 0
self.num_heads = self.total_num_heads // tp_size
self.total_num_kv_heads = num_kv_heads
if self.total_num_kv_heads >= tp_size:
# Number of KV heads is greater than TP size, so we partition
# the KV heads across multiple tensor parallel GPUs.
assert self.total_num_kv_heads % tp_size == 0
else:
# Number of KV heads is less than TP size, so we replicate
# the KV heads across multiple tensor parallel GPUs.
assert tp_size % self.total_num_kv_heads == 0
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size)
self.head_dim = head_dim
self.q_size = self.num_heads * self.head_dim
self.kv_size = self.num_kv_heads * self.head_dim
self.qkv_proj = QKVParallelLinear(
hidden_size,
self.head_dim,
self.total_num_heads,
self.total_num_kv_heads,
bias=config.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=config.attention_bias,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)
self.q_norm = RMSNorm(hidden_size=self.head_dim,
eps=config.rms_norm_eps)
self.k_norm = RMSNorm(hidden_size=self.head_dim,
eps=config.rms_norm_eps)
self.v_norm = RMSNorm(hidden_size=self.head_dim,
eps=config.rms_norm_eps,
has_weight=False)
layer_idx = extract_layer_index(prefix)
is_sliding = config.layer_types[layer_idx] == "sliding_attention"
self.sliding_window = config.sliding_window if is_sliding else None
# Initialize the rotary embedding.
if is_sliding:
# Local attention. Override the values in config.json.
rope_theta = config.rope_local_base_freq
rope_scaling = {"rope_type": "default"}
else:
# Global attention. Use the values in config.json.
rope_theta = config.rope_theta
rope_scaling = config.rope_scaling
first_kv_shared_layer_idx = (config.num_hidden_layers -
config.num_kv_shared_layers)
self.is_kv_shared = layer_idx >= first_kv_shared_layer_idx
kv_sharing_target_layer_name = None
if self.is_kv_shared:
# Last full attention layer is 1 before sharing
# Last sliding attention layer is 2 before sharing
offset = 2 if self.sliding_window is not None else 1
kv_shared_layer_index = first_kv_shared_layer_idx - offset
if kv_shared_layer_index >= 0:
# Only the greater layer is required to specify sharing.
kv_sharing_target_layer_name = f"language_model.model.layers.{kv_shared_layer_index}.self_attn.attn" # noqa: E501
self.rotary_emb = get_rope(
self.head_dim,
rotary_dim=self.head_dim,
max_position=max_position_embeddings,
base=rope_theta,
is_neox_style=True,
rope_scaling=rope_scaling,
)
self.attn = Attention(
num_heads=self.num_heads,
head_size=self.head_dim,
scale=1.0,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
per_layer_sliding_window=self.sliding_window,
kv_sharing_target_layer_name=kv_sharing_target_layer_name,
prefix=f"{prefix}.attn")
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
**kwargs,
) -> torch.Tensor:
qkv, _ = self.qkv_proj(hidden_states)
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1)
q = q.unflatten(-1, (self.num_heads, self.head_dim))
q = self.q_norm(q)
q = q.flatten(-2, -1)
k = k.unflatten(-1, (self.num_kv_heads, self.head_dim))
k = self.k_norm(k)
k = k.flatten(-2, -1)
v = v.unflatten(-1, (self.num_kv_heads, self.head_dim))
v = self.v_norm(v)
v = v.flatten(-2, -1)
q, k = self.rotary_emb(positions, q, k)
attn_output = self.attn(q, k, v)
output, _ = self.o_proj(attn_output)
return output
class Gemma3nDecoderLayer(nn.Module):
def __init__(
self,
config: Gemma3nTextConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
assert isinstance(config, Gemma3nTextConfig)
self.altup_active_idx = config.altup_active_idx
assert config.altup_correct_scale
self.altup = Gemma3nAltUp(
hidden_size=config.hidden_size,
rms_norm_eps=config.rms_norm_eps,
altup_num_inputs=config.altup_num_inputs,
altup_coef_clip=config.altup_coef_clip,
altup_active_idx=config.altup_active_idx,
quant_config=quant_config,
prefix=f"{prefix}.altup",
)
self.self_attn = Gemma3nAttention(
config=config,
hidden_size=config.hidden_size,
num_heads=config.num_attention_heads,
num_kv_heads=config.num_key_value_heads,
head_dim=config.head_dim,
max_position_embeddings=config.max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self.mlp = Gemma3nMLP(
hidden_size=config.hidden_size,
# NOTE: Matformer https://github.com/huggingface/transformers/blob/a52478253bbe522a420e88ea3940d4d98a935300/src/transformers/models/gemma3n/modular_gemma3n.py#L258 # noqa: E501
intermediate_size=config.intermediate_size[extract_layer_index(
prefix)],
hidden_activation=config.hidden_activation,
quant_config=quant_config,
activation_sparsity=config.activation_sparsity_pattern[
extract_layer_index(prefix)],
prefix=f"{prefix}.mlp",
)
self.laurel = Gemma3nLaurelBlock(
hidden_size=config.hidden_size,
laurel_rank=config.laurel_rank,
rms_norm_eps=config.rms_norm_eps,
quant_config=quant_config,
prefix=f"{prefix}.laurel",
)
# NOTE(rob): should be ColumnParallelLinear and RowParallelLinear
# But, we need to add per_layer_input_gate(x) to per_layer_input.
# per_layer_input cannot be sharded, so we replicate for now.
self.per_layer_input_gate = ReplicatedLinear(
config.hidden_size,
config.hidden_size_per_layer_input,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.per_layer_input_gate",
return_bias=False,
)
self.per_layer_projection = ReplicatedLinear(
config.hidden_size_per_layer_input,
config.hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.per_layer_projection",
return_bias=False,
)
# LayerNorms.
self.input_layernorm = RMSNorm(
config.hidden_size,
eps=config.rms_norm_eps,
)
self.post_attention_layernorm = RMSNorm(
config.hidden_size,
eps=config.rms_norm_eps,
)
self.pre_feedforward_layernorm = RMSNorm(
config.hidden_size,
eps=config.rms_norm_eps,
)
self.post_feedforward_layernorm = RMSNorm(
config.hidden_size,
eps=config.rms_norm_eps,
)
self.post_per_layer_input_norm = RMSNorm(
config.hidden_size,
eps=config.rms_norm_eps,
)
self.act_fn = _ACTIVATION_REGISTRY[config.hidden_activation]
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
per_layer_input: torch.Tensor,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
# ActUp (predict).
predictions = self.altup.predict(hidden_states)
active_prediction = predictions[self.altup_active_idx]
active_prediction_normed = self.input_layernorm(active_prediction)
laurel_output = self.laurel(active_prediction_normed)
# Attention.
attn = self.self_attn(
positions=positions,
hidden_states=active_prediction_normed,
**kwargs,
)
attn = self.post_attention_layernorm(attn)
attn_gated = attn + active_prediction
attn_laurel = (attn_gated + laurel_output) / torch.sqrt(
torch.tensor(2.0))
# MLP.
attn_norm = self.pre_feedforward_layernorm(attn_laurel)
attn_ffw = self.mlp(attn_norm)
attn_ffw_norm = self.post_feedforward_layernorm(attn_ffw)
attn_ffw_laurel_gated = attn_laurel + attn_ffw_norm
# ActUp (connect).
corrected_predictions = self.altup.correct(predictions,
attn_ffw_laurel_gated)
first_prediction = corrected_predictions[self.altup_active_idx]
first_prediction = self.altup.scale_corrected_output(first_prediction)
# per_layer_input_gate adapted from jax.numpy.einsum("btd,dp->btp", ...)
first_prediction = self.per_layer_input_gate(first_prediction)
first_prediction = self.act_fn(first_prediction)
first_prediction = torch.mul(first_prediction, per_layer_input)
# per_layer_projection adapted from jax.numpy.einsum("btp,pd->btd", ...)
first_prediction = self.per_layer_projection(first_prediction)
first_prediction = self.post_per_layer_input_norm(first_prediction)
corrected_predictions[1:] += first_prediction
return corrected_predictions
# This enables torch.compile if --kv-sharing-fast-prefill passed
@support_torch_compile(enable_if=lambda vllm_config: vllm_config.cache_config.
kv_sharing_fast_prefill)
class Gemma3nSelfDecoder(nn.Module):
"""
Includes altup embedding and self decoder layers
"""
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
decoder_layers: list[Gemma3nDecoderLayer],
layer_idx_start: int,
per_layer_model_projection: ColumnParallelLinear,
embed_scale_per_layer: torch.Tensor,
embed_tokens_per_layer: VocabParallelEmbedding,
per_layer_projection_norm: RMSNorm,
per_layer_input_scale: torch.Tensor,
altup_projections: nn.ModuleList,
eps: torch.Tensor,
embed_tokens: VocabParallelEmbedding,
embed_scale: torch.Tensor,
):
super().__init__()
self.decoder_layers = decoder_layers
self.layer_idx_start = layer_idx_start
self.per_layer_model_projection = per_layer_model_projection
self.config = vllm_config.model_config.hf_config
self.embed_scale_per_layer = embed_scale_per_layer
self.embed_tokens_per_layer = embed_tokens_per_layer
self.per_layer_projection_norm = per_layer_projection_norm
self.per_layer_input_scale = per_layer_input_scale
self.altup_projections = altup_projections
self.eps = eps
self.embed_tokens = embed_tokens
self.embed_scale = embed_scale
def get_per_layer_input_embeddings(
self, input_ids: torch.Tensor) -> torch.Tensor:
# Deal with the fact that vocab_size_per_layer_input < vocab_size
# which causes us to have some out of vocab tokens by setting
# those token ids to 0. This matches the HF implementation.
per_layer_inputs_mask = torch.logical_and(
input_ids >= 0, input_ids < self.config.vocab_size_per_layer_input)
per_layer_inputs_tokens = torch.where(per_layer_inputs_mask, input_ids,
torch.zeros_like(input_ids))
return self.embed_tokens_per_layer(
per_layer_inputs_tokens) * self.embed_scale_per_layer
def get_per_layer_inputs(
self,
hidden_states_0: torch.Tensor,
per_layer_inputs: Optional[torch.Tensor],
) -> torch.Tensor:
per_layer_projection = self.per_layer_model_projection(hidden_states_0)
per_layer_projection = per_layer_projection.reshape(
*hidden_states_0.shape[:-1],
self.config.num_hidden_layers,
self.config.hidden_size_per_layer_input,
)
per_layer_projection = self.per_layer_projection_norm(
per_layer_projection)
if per_layer_inputs is not None:
# Profiling run does not compute per_layer_inputs
per_layer_inputs = per_layer_projection + per_layer_inputs
per_layer_inputs *= self.per_layer_input_scale
else:
per_layer_inputs = per_layer_projection
return per_layer_inputs
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.embed_tokens(input_ids) * self.embed_scale
def altup_embed(self, hidden_states_0: torch.Tensor) -> torch.Tensor:
# Altup embed.
hidden_states = [hidden_states_0] * self.config.altup_num_inputs
target_magnitude = torch.mean(hidden_states_0**2, dim=-1,
keepdim=True)**0.5
for i in range(1, self.config.altup_num_inputs):
hidden_states[i] = self.altup_projections[i - 1](hidden_states[i])
new_magnitude = torch.mean(hidden_states[i]**2,
dim=-1,
keepdim=True)**0.5
hidden_states[i] *= target_magnitude / torch.maximum(
new_magnitude, self.eps)
hidden_states = torch.stack(hidden_states, dim=-1)
return hidden_states
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
per_layer_inputs: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
if inputs_embeds is not None:
hidden_states_0 = inputs_embeds
else:
hidden_states_0 = self.get_input_embeddings(input_ids)
adjusted_per_layer_inputs = self.get_per_layer_inputs(
hidden_states_0, per_layer_inputs)
hidden_states = self.altup_embed(hidden_states_0)
# [altnum_inputs, num_tokens, hidden_size]
hidden_states = hidden_states.permute(2, 0, 1)
for idx, layer in enumerate(self.decoder_layers):
layer_idx = idx + self.layer_idx_start
# [altup_num_inputs, num_tokens, hidden_size]
hidden_states = layer(
positions=positions,
hidden_states=hidden_states,
per_layer_input=adjusted_per_layer_inputs[:, layer_idx, :],
**kwargs,
)
# [num_tokens, hidden_size, altnum_inputs]
hidden_states = hidden_states.permute(1, 2, 0)
return hidden_states, adjusted_per_layer_inputs
# This enables torch.compile if --kv-sharing-fast-prefill passed
@support_torch_compile(enable_if=lambda vllm_config: vllm_config.cache_config.
kv_sharing_fast_prefill)
class Gemma3nCrossDecoder(nn.Module):
"""
Cross-decoder layers
"""
def __init__(
self,
*,
vllm_config: VllmConfig,
prefix: str = "",
decoder_layers: list[Gemma3nDecoderLayer],
layer_idx_start: int,
):
super().__init__()
self.decoder_layers = decoder_layers
self.layer_idx_start = layer_idx_start
def forward(
self,
positions: torch.Tensor,
hidden_states: torch.Tensor,
per_layer_inputs: torch.Tensor,
**kwargs,
) -> torch.Tensor:
# [altnum_inputs, num_tokens, hidden_size]
hidden_states = hidden_states.permute(2, 0, 1)
for idx, layer in enumerate(self.decoder_layers):
layer_idx = idx + self.layer_idx_start
# [altup_num_inputs, num_tokens, hidden_size]
hidden_states = layer(
positions=positions,
hidden_states=hidden_states,
per_layer_input=per_layer_inputs[:, layer_idx, :],
**kwargs,
)
# [num_tokens, hidden_size, altnum_inputs]
hidden_states = hidden_states.permute(1, 2, 0)
return hidden_states
# This disables torch.compile if --kv-sharing-fast-prefill passed
@support_torch_compile(enable_if=lambda vllm_config: not vllm_config.
cache_config.kv_sharing_fast_prefill)
class Gemma3nTextModel(nn.Module, SupportsQuant):
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
cache_config = vllm_config.cache_config
quant_config = vllm_config.quant_config
self.config = config
self.quant_config = quant_config
self.embed_tokens = VocabParallelEmbedding(
config.vocab_size,
config.hidden_size,
quant_config=quant_config,
prefix=f"{prefix}.embed_tokens",
)
self.embed_scale = torch.tensor(
config.hidden_size**0.5,
dtype=self.embed_tokens.weight.dtype,
)
# Additional per-layer embeddings (PLE)
self.embed_tokens_per_layer = VocabParallelEmbedding(
config.vocab_size_per_layer_input,
config.num_hidden_layers * config.hidden_size_per_layer_input,
quant_config=quant_config,
prefix=f"{prefix}.per_layer_embed_tokens",
)
self.embed_scale_per_layer = torch.tensor(
config.hidden_size_per_layer_input**0.5,
dtype=self.embed_tokens.weight.dtype,
)
self.per_layer_model_projection = ColumnParallelLinear(
config.hidden_size,
config.num_hidden_layers * config.hidden_size_per_layer_input,
bias=False,
gather_output=True,
return_bias=False,
quant_config=quant_config,
prefix=f"{prefix}.per_layer_model_projection",
)
self.per_layer_projection_norm = RMSNorm(
hidden_size=config.hidden_size_per_layer_input,
eps=config.rms_norm_eps,
)
self.per_layer_input_scale = torch.rsqrt(torch.tensor(2.0)).to(
self.embed_tokens.weight.dtype)
self.per_layer_projection_scale = torch.tensor(
config.hidden_size**0.5,
dtype=self.embed_tokens.weight.dtype,
)
self.altup_projections = nn.ModuleList([
ColumnParallelLinear(
config.hidden_size,
config.hidden_size,
bias=False,
gather_output=True,
return_bias=False,
quant_config=quant_config,
prefix=f"{prefix}.altup_projections.{idx-1}",
) for idx in range(1, self.config.altup_num_inputs)
])
self.altup_unembed_projections = nn.ModuleList([
ColumnParallelLinear(
config.hidden_size,
config.hidden_size,
bias=False,
gather_output=True,
return_bias=False,
quant_config=quant_config,
prefix=f"{prefix}.altup_unembed_projections.{idx-1}",
) for idx in range(1, self.config.altup_num_inputs)
])
# Transformer blocks.
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: Gemma3nDecoderLayer(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.layers")
self.eps = torch.tensor(torch.finfo().min)
first_kv_shared_layer_idx = (config.num_hidden_layers -
config.num_kv_shared_layers)
# Layer idx 0-19 are self-decoder layers in You Only Cache Once (YOCO)
with set_model_tag("self_decoder"):
self.self_decoder = Gemma3nSelfDecoder(
vllm_config=vllm_config,
prefix=f"{prefix}.self_decoder",
decoder_layers=self.layers[:first_kv_shared_layer_idx],
layer_idx_start=0,
per_layer_model_projection=self.per_layer_model_projection,
embed_scale_per_layer=self.embed_scale_per_layer,
embed_tokens_per_layer=self.embed_tokens_per_layer,
per_layer_projection_norm=self.per_layer_projection_norm,
per_layer_input_scale=self.per_layer_input_scale,
altup_projections=self.altup_projections,
eps=self.eps,
embed_tokens=self.embed_tokens,
embed_scale=self.embed_scale,
)
# Layer idx 20-30 are cross-decoder layers in YOCO
with set_model_tag("cross_decoder"):
self.cross_decoder = Gemma3nCrossDecoder(
vllm_config=vllm_config,
prefix=f"{prefix}.cross_decoder",
decoder_layers=self.layers[first_kv_shared_layer_idx:],
layer_idx_start=first_kv_shared_layer_idx,
)
self.norm = RMSNorm(
config.hidden_size,
eps=config.rms_norm_eps,
)
self.fast_prefill_enabled = cache_config.kv_sharing_fast_prefill
if self.fast_prefill_enabled:
# Allocate static buffers for CUDAGraph
# TODO(sarckk): Extract this functionality to interface
max_num_tokens = vllm_config.scheduler_config.max_num_batched_tokens
device = next(self.parameters()).device
self.positions = torch.zeros(max_num_tokens,
dtype=torch.int64,
device=device)
self.hidden_states = torch.zeros(
(max_num_tokens, config.hidden_size,
self.config.altup_num_inputs),
dtype=self.embed_tokens.weight.dtype,
device=device,
)
self.per_layer_inputs = torch.zeros(
(max_num_tokens, self.config.num_hidden_layers,
self.config.hidden_size_per_layer_input),
dtype=self.embed_tokens.weight.dtype,
device=device,
)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.self_decoder.get_input_embeddings(input_ids)
def fast_prefill_forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
per_layer_inputs: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
logits_indices_padded, num_logits_indices = None, None
attn_metadata = get_forward_context().attn_metadata
# attn_metadata is None during dummy runs
if (self.fast_prefill_enabled and attn_metadata is not None):
assert isinstance(attn_metadata, dict)
# Last layer is a KV sharing layer
layer_attn_metadata = attn_metadata[
self.layers[-1].self_attn.attn.layer_name]
if (isinstance(layer_attn_metadata, KVSharingFastPrefillMetadata)):
logits_indices_padded = (
layer_attn_metadata.logits_indices_padded)
num_logits_indices = layer_attn_metadata.num_logits_indices
# Copy inputs for cudagraph
batch_size = positions.size(0)
self.positions[:batch_size].copy_(positions)
self_decoder_hidden_states, per_layer_inputs_adjusted = \
self.self_decoder(
input_ids=input_ids,
positions=self.positions[:batch_size],
inputs_embeds=inputs_embeds,
per_layer_inputs=per_layer_inputs,
**kwargs,
)
if logits_indices_padded is None:
logits_indices_padded = torch.arange(
positions.size(0),
dtype=positions.dtype,
device=positions.device,
)
# NOTE(sarckk): There is currently a bug caused by
# vLLM converting output of last piecewise CUDA graph
# to weakref, causing memory to be prematurely freed
# when there are multiple compilation units
# Keep .clone() until fix in
# https://github.com/vllm-project/vllm/pull/22282
hidden_states = self_decoder_hidden_states.clone()
# Copy inputs for cudagraph
num_padded_logits_indices = logits_indices_padded.size(0)
self.positions[:num_padded_logits_indices].copy_(
positions[logits_indices_padded])
self.hidden_states[:num_padded_logits_indices].copy_(
self_decoder_hidden_states[logits_indices_padded])
self.per_layer_inputs[:num_padded_logits_indices].copy_(
per_layer_inputs_adjusted[logits_indices_padded])
cross_decoder_hidden_states = self.cross_decoder(
positions=self.positions[:num_padded_logits_indices],
hidden_states=self.hidden_states[:num_padded_logits_indices],
per_layer_inputs=self.per_layer_inputs[:num_padded_logits_indices],
**kwargs,
)
if num_logits_indices is not None:
assert num_logits_indices > 0
# Merge cross-decoder and self-decoder hidden states
hidden_states[logits_indices_padded[:num_logits_indices]] = (
cross_decoder_hidden_states[:num_logits_indices])
else:
hidden_states = cross_decoder_hidden_states
return hidden_states
def normal_forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
inputs_embeds: Optional[torch.Tensor] = None,
per_layer_inputs: Optional[torch.Tensor] = None,
**kwargs,
) -> torch.Tensor:
hidden_states, per_layer_inputs = self.self_decoder(
input_ids=input_ids,
positions=positions,
inputs_embeds=inputs_embeds,
per_layer_inputs=per_layer_inputs,
**kwargs,
)
hidden_states = self.cross_decoder(
positions=positions,
hidden_states=hidden_states,
per_layer_inputs=per_layer_inputs,
**kwargs,
)
return hidden_states
def altup_unembed(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor:
# Altup unembed.
target_magnitude = torch.mean(hidden_states[..., 0]**2,
dim=-1,
keepdim=True)**0.5
for i in range(1, self.config.altup_num_inputs):
hidden_states[..., i] = self.altup_unembed_projections[i - 1](
hidden_states[..., i])
new_magnitude = torch.mean(hidden_states[..., i]**2,
dim=-1,
keepdim=True)**0.5
hidden_states[..., i] *= target_magnitude / torch.maximum(
new_magnitude, self.eps)
# [num_tokens,hidden_size, altup_num_inputs] -> [num_tokens,hidden_size]
hidden_states = torch.mean(hidden_states, dim=-1)
return hidden_states
def forward(
self,
input_ids: Optional[torch.Tensor],
positions: torch.Tensor,
per_layer_inputs: Optional[torch.Tensor] = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[torch.Tensor, IntermediateTensors]:
if self.fast_prefill_enabled:
hidden_states = self.fast_prefill_forward(
input_ids,
positions,
inputs_embeds,
per_layer_inputs,
**kwargs,
)
else:
hidden_states = self.normal_forward(
input_ids,
positions,
inputs_embeds,
per_layer_inputs,
**kwargs,
)
hidden_states = self.altup_unembed(hidden_states)
return self.norm(hidden_states)
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
stacked_params_mapping = [
# (param_name, shard_name, shard_id)
("qkv_proj", "q_proj", "q"),
("qkv_proj", "k_proj", "k"),
("qkv_proj", "v_proj", "v"),
("gate_up_proj", "gate_proj", 0),
("gate_up_proj", "up_proj", 1),
]
params_dict = dict(self.named_parameters())
loaded_params: set[str] = set()
for name, loaded_weight in weights:
if (self.quant_config is not None and
(scale_name := self.quant_config.get_cache_scale(name))):
# Loading kv cache scales for compressed-tensors quantization
param = params_dict[scale_name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
loaded_weight = loaded_weight[0]
weight_loader(param, loaded_weight)
loaded_params.add(scale_name)
continue
for (param_name, shard_name, shard_id) in stacked_params_mapping:
if shard_name not in name:
continue
# Avoid spurious match with ".up_proj".
if "altup_projections" in name:
continue
name = name.replace(shard_name, param_name)
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = param.weight_loader
weight_loader(param, loaded_weight, shard_id)
break
else:
# Skip loading extra bias for GPTQ models.
if name.endswith(".bias") and name not in params_dict:
continue
# Remapping the name of FP8 kv-scale.
name = maybe_remap_kv_scale_name(name, params_dict)
if name is None:
continue
if is_pp_missing_parameter(name, self):
continue
param = params_dict[name]
weight_loader = getattr(param, "weight_loader",
default_weight_loader)
weight_loader(param, loaded_weight)
loaded_params.add(name)
return loaded_params
class Gemma3nForCausalLM(nn.Module):
packed_modules_mapping = {
"qkv_proj": [
"q_proj",
"k_proj",
"v_proj",
],
"gate_up_proj": [
"gate_proj",
"up_proj",
],
}
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
config = vllm_config.model_config.hf_config
lora_config = vllm_config.lora_config
del lora_config # Unused.
super().__init__()
self.config = config
self.cache_config = vllm_config.cache_config
self.model = Gemma3nTextModel(vllm_config=vllm_config,
prefix=maybe_prefix(prefix, "model"))
self.logits_processor = LogitsProcessor(
config.vocab_size, soft_cap=config.final_logit_softcapping)
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor:
return self.model.get_input_embeddings(input_ids)
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
*,
per_layer_inputs: Optional[torch.Tensor] = None,
intermediate_tensors: Optional[IntermediateTensors] = None,
inputs_embeds: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[torch.Tensor, IntermediateTensors]:
hidden_states = self.model(
input_ids,
positions,
per_layer_inputs=per_layer_inputs,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
**kwargs,
)
return hidden_states
def compute_logits(
self,
hidden_states: torch.Tensor,
sampling_metadata: Optional[SamplingMetadata],
) -> Optional[torch.Tensor]:
logits = self.logits_processor(self.model.embed_tokens, hidden_states,
sampling_metadata)
return logits
def load_weights(self, weights: Iterable[tuple[str,
torch.Tensor]]) -> set[str]:
loader = AutoWeightsLoader(self,
skip_substrs=([
"embed_audio.", "embed_vision.",
"audio_tower.", "vision_tower."
]))
return loader.load_weights(weights)