vllm/vllm/distributed/utils.py
Kebe b4ac449a83
[Misc] Merge the logs of pp layers partitions (#16225)
Signed-off-by: Kebe <mail@kebe7jun.com>
2025-04-08 00:18:15 -07:00

347 lines
14 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# Copyright 2023 The vLLM team.
# Adapted from
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/core/tensor_parallel/utils.py
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
import dataclasses
import datetime
import pickle
import time
from collections import deque
from typing import Any, Deque, Dict, Optional, Sequence, Tuple
import torch
from torch.distributed import ProcessGroup, TCPStore
from torch.distributed.distributed_c10d import (Backend, PrefixStore,
_get_default_timeout,
_unregister_process_group,
is_nccl_available)
from torch.distributed.rendezvous import rendezvous
import vllm.envs as envs
from vllm.logger import init_logger
logger = init_logger(__name__)
def ensure_divisibility(numerator, denominator):
"""Ensure that numerator is divisible by the denominator."""
assert numerator % denominator == 0, "{} is not divisible by {}".format(
numerator, denominator)
def divide(numerator, denominator):
"""Ensure that numerator is divisible by the denominator and return
the division value."""
ensure_divisibility(numerator, denominator)
return numerator // denominator
def split_tensor_along_last_dim(
tensor: torch.Tensor,
num_partitions: int,
contiguous_split_chunks: bool = False,
) -> Sequence[torch.Tensor]:
""" Split a tensor along its last dimension.
Arguments:
tensor: input tensor.
num_partitions: number of partitions to split the tensor
contiguous_split_chunks: If True, make each chunk contiguous
in memory.
Returns:
A list of Tensors
"""
# Get the size and dimension.
last_dim = tensor.dim() - 1
last_dim_size = divide(tensor.size()[last_dim], num_partitions)
# Split.
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
# NOTE: torch.split does not create contiguous tensors by default.
if contiguous_split_chunks:
return tuple(chunk.contiguous() for chunk in tensor_list)
return tensor_list
def get_pp_indices(num_hidden_layers: int, pp_rank: int,
pp_size: int) -> Tuple[int, int]:
"""Try to evenly distribute layers across partitions.
If the number of layers is not divisible by the number of partitions,
the remaining layers are evenly distributed across all but the last
partition. The last partition is excluded because it often contains an
additional norm layer and we are attempting to balance compute.
If `pp_size > 2` and the number of remaining layers is
`0 < x <= pp_size - 2` then the remaining layers are evenly distributed
across the middle partitions. The first and last partitions are excluded
because they contain the input and output embeddings respectively and we
are attempting to reduce maximum memory consumption across partitions.
"""
partition_list_str = envs.VLLM_PP_LAYER_PARTITION
if partition_list_str is not None:
try:
partitions = [
int(layer) for layer in partition_list_str.split(",")
]
except ValueError as err:
raise ValueError("Invalid partition string: {}".format(
partition_list_str)) from err
if len(partitions) != pp_size:
raise ValueError(f"{len(partitions)=} does not match {pp_size=}.")
if sum(partitions) != num_hidden_layers:
raise ValueError(
f"{sum(partitions)=} does not match {num_hidden_layers=}.")
else:
layers_per_partition = num_hidden_layers // pp_size
partitions = [layers_per_partition for _ in range(pp_size)]
if remaining_layers := num_hidden_layers % pp_size:
for i in range(2, remaining_layers + 2):
partitions[-i] += 1
logger.info(
"Hidden layers were unevenly partitioned: [%s]. "
"This can be manually overridden using the "
"VLLM_PP_LAYER_PARTITION environment variable",
",".join(str(p) for p in partitions))
start_layer = sum(partitions[:pp_rank])
end_layer = start_layer + partitions[pp_rank]
return (start_layer, end_layer)
@dataclasses.dataclass
class StatelessProcessGroup:
"""A dataclass to hold a metadata store, and the rank, world_size of the
group. Only use it to communicate metadata between processes.
For data-plane communication, create NCCL-related objects.
"""
rank: int
world_size: int
store: torch._C._distributed_c10d.Store
data_expiration_seconds: int = 3600 # 1 hour
# dst rank -> counter
send_dst_counter: Dict[int, int] = dataclasses.field(default_factory=dict)
# src rank -> counter
recv_src_counter: Dict[int, int] = dataclasses.field(default_factory=dict)
broadcast_send_counter: int = 0
broadcast_recv_src_counter: Dict[int, int] = dataclasses.field(
default_factory=dict)
# A deque to store the data entries, with key and timestamp.
entries: Deque[Tuple[str,
float]] = dataclasses.field(default_factory=deque)
def __post_init__(self):
assert self.rank < self.world_size
self.send_dst_counter = {i: 0 for i in range(self.world_size)}
self.recv_src_counter = {i: 0 for i in range(self.world_size)}
self.broadcast_recv_src_counter = {
i: 0
for i in range(self.world_size)
}
def send_obj(self, obj: Any, dst: int):
"""Send an object to a destination rank."""
self.expire_data()
key = f"send_to/{dst}/{self.send_dst_counter[dst]}"
self.store.set(key, pickle.dumps(obj))
self.send_dst_counter[dst] += 1
self.entries.append((key, time.time()))
def expire_data(self):
"""Expire data that is older than `data_expiration_seconds` seconds."""
while self.entries:
# check the oldest entry
key, timestamp = self.entries[0]
if time.time() - timestamp > self.data_expiration_seconds:
self.store.delete_key(key)
self.entries.popleft()
else:
break
def recv_obj(self, src: int) -> Any:
"""Receive an object from a source rank."""
obj = pickle.loads(
self.store.get(
f"send_to/{self.rank}/{self.recv_src_counter[src]}"))
self.recv_src_counter[src] += 1
return obj
def broadcast_obj(self, obj: Optional[Any], src: int) -> Any:
"""Broadcast an object from a source rank to all other ranks.
It does not clean up after all ranks have received the object.
Use it for limited times, e.g., for initialization.
"""
if self.rank == src:
self.expire_data()
key = (f"broadcast_from/{src}/"
f"{self.broadcast_send_counter}")
self.store.set(key, pickle.dumps(obj))
self.broadcast_send_counter += 1
self.entries.append((key, time.time()))
return obj
else:
key = (f"broadcast_from/{src}/"
f"{self.broadcast_recv_src_counter[src]}")
recv_obj = pickle.loads(self.store.get(key))
self.broadcast_recv_src_counter[src] += 1
return recv_obj
def all_gather_obj(self, obj: Any) -> list[Any]:
"""All gather an object from all ranks."""
gathered_objs = []
for i in range(self.world_size):
if i == self.rank:
gathered_objs.append(obj)
self.broadcast_obj(obj, src=self.rank)
else:
recv_obj = self.broadcast_obj(None, src=i)
gathered_objs.append(recv_obj)
return gathered_objs
def barrier(self):
"""A barrier to synchronize all ranks."""
for i in range(self.world_size):
self.broadcast_obj(None, src=i)
@staticmethod
def create(
host: str,
port: int,
rank: int,
world_size: int,
data_expiration_seconds: int = 3600,
store_timeout: int = 300,
) -> "StatelessProcessGroup":
"""A replacement for `torch.distributed.init_process_group` that does not
pollute the global state.
If we have process A and process B called `torch.distributed.init_process_group`
to form a group, and then we want to form another group with process A, B, C,
D, it is not possible in PyTorch, because process A and process B have already
formed a group, and process C and process D cannot join that group. This
function is a workaround for this issue.
`torch.distributed.init_process_group` is a global call, while this function
is a stateless call. It will return a `StatelessProcessGroup` object that can be
used for exchanging metadata. With this function, process A and process B
can call `StatelessProcessGroup.create` to form a group, and then process A, B,
C, and D can call `StatelessProcessGroup.create` to form another group.
""" # noqa
store = TCPStore(
host_name=host,
port=port,
world_size=world_size,
is_master=(rank == 0),
timeout=datetime.timedelta(seconds=store_timeout),
)
return StatelessProcessGroup(
rank=rank,
world_size=world_size,
store=store,
data_expiration_seconds=data_expiration_seconds)
def stateless_init_torch_distributed_process_group(
host: str, port: int, rank: int, world_size: int,
backend: str) -> ProcessGroup:
"""
A replacement for `torch.distributed.init_process_group` that does not
pollute the global state. The created ProcessGroup object can be used for
some operations such as `allreduce`, because it does not depend on the
global rank. However, some operations such as `broadcast` cannot be used
because it depends on the global rank.
# TODO: ask for help from PyTorch team if we need the `broadcast` operation.
This function is useful when we are not sure about the total number of
processes in the process group. For example, we may have process
1, 2, ..., 8 who want to communicate, and process 9 might be the same
process as process 1, or it might be a different process; process 10
might be the same process as process 5, or it might be a different process.
In this case, how can we reliably form a communication channel within
process 9 and 10, without affecting the communication channel within
process 1, 2, ..., 8?
One possible solution is to figure out if process 9 and 10 are the same
as process 1 and 5 beforehand, and then form a communication channel
based on the information, adjusting the ranks and world_size etc. However,
figuring out the information is not always easy, and it will interfere
with the main communication channel.
Our solution is to always form a communication channel with process 1, 2,
..., 8, and then use this function to form another communication channel
with process 9 and 10. This way, regardless of whether process 9 and 10
are the same as process 1 and 5, the main communication channel is
always formed with process 1, 2, ..., 8, and the additional communication
channel is formed with process 9 and 10.
"""
init_method = f"tcp://{host}:{port}"
backend = Backend(backend) # it is basically string
timeout = _get_default_timeout(backend)
store, rank, world_size = next(
rendezvous(init_method, rank, world_size, timeout=timeout))
store.set_timeout(timeout)
group_rank = rank
group_size = world_size
# Use a PrefixStore to avoid accidental overrides of keys used by
# different systems (e.g. RPC) in case the store is multi-tenant.
prefix_store = PrefixStore(init_method, store)
pg: ProcessGroup = ProcessGroup(
prefix_store,
group_rank,
group_size,
)
if backend == "gloo":
from torch.distributed.distributed_c10d import ProcessGroupGloo
backend_class = ProcessGroupGloo(prefix_store,
group_rank,
group_size,
timeout=timeout)
backend_type = ProcessGroup.BackendType.GLOO
device = torch.device("cpu")
elif backend == "nccl":
assert is_nccl_available()
from torch.distributed.distributed_c10d import ProcessGroupNCCL
backend_options = ProcessGroupNCCL.Options()
backend_options._timeout = timeout
backend_class = ProcessGroupNCCL(prefix_store, group_rank, group_size,
backend_options)
backend_type = ProcessGroup.BackendType.NCCL
device = torch.device("cuda")
else:
raise RuntimeError(f"Unsupported torch distributed backend: {backend}")
pg._set_default_backend(backend_type)
backend_class._set_sequence_number_for_group()
pg._register_backend(device, backend_type, backend_class)
return pg
def stateless_destroy_torch_distributed_process_group(
pg: ProcessGroup) -> None:
"""
Destroy ProcessGroup returned by
stateless_init_torch_distributed_process_group().
"""
# Lazy import for non-CUDA backends.
from torch.distributed.distributed_c10d import _shutdown_backend
_shutdown_backend(pg)
_unregister_process_group(pg.group_name)