mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 23:55:19 +08:00
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**
commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:18:24 2025 -0500
Add SPDX license headers to python source files
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
also be easily used by tools to help manage license compliance.
The Linux Foundation runs license scans against the codebase to help
ensure
we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
More information can be found on the SPDX site:
- https://spdx.dev/learn/handling-license-info/
Signed-off-by: Russell Bryant <rbryant@redhat.com>
commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date: Fri Jan 31 14:36:32 2025 -0500
Check for SPDX headers using pre-commit
Signed-off-by: Russell Bryant <rbryant@redhat.com>
---------
Signed-off-by: Russell Bryant <rbryant@redhat.com>
173 lines
5.6 KiB
Python
173 lines
5.6 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
import pytest
|
|
import pytest_asyncio
|
|
import requests
|
|
|
|
from vllm.transformers_utils.tokenizer import get_tokenizer
|
|
|
|
from ...utils import RemoteOpenAIServer
|
|
from .test_completion import zephyr_lora_added_tokens_files # noqa: F401
|
|
from .test_completion import zephyr_lora_files # noqa: F401
|
|
|
|
# any model with a chat template should work here
|
|
MODEL_NAME = "HuggingFaceH4/zephyr-7b-beta"
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def server(zephyr_lora_added_tokens_files: str): # noqa: F811
|
|
args = [
|
|
# use half precision for speed and memory savings in CI environment
|
|
"--dtype",
|
|
"bfloat16",
|
|
"--max-model-len",
|
|
"8192",
|
|
"--enforce-eager",
|
|
"--max-num-seqs",
|
|
"128",
|
|
# lora config
|
|
"--enable-lora",
|
|
"--lora-modules",
|
|
f"zephyr-lora2={zephyr_lora_added_tokens_files}",
|
|
"--max-lora-rank",
|
|
"64",
|
|
]
|
|
|
|
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
|
|
yield remote_server
|
|
|
|
|
|
@pytest.fixture(scope="module")
|
|
def tokenizer_name(model_name: str,
|
|
zephyr_lora_added_tokens_files: str): # noqa: F811
|
|
return zephyr_lora_added_tokens_files if (
|
|
model_name == "zephyr-lora2") else model_name
|
|
|
|
|
|
@pytest_asyncio.fixture
|
|
async def client(server):
|
|
async with server.get_async_client() as async_client:
|
|
yield async_client
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name,tokenizer_name",
|
|
[(MODEL_NAME, MODEL_NAME), ("zephyr-lora2", "zephyr-lora2")],
|
|
indirect=["tokenizer_name"],
|
|
)
|
|
async def test_tokenize_completions(
|
|
server: RemoteOpenAIServer,
|
|
model_name: str,
|
|
tokenizer_name: str,
|
|
):
|
|
tokenizer = get_tokenizer(tokenizer_name=tokenizer_name,
|
|
tokenizer_mode="fast")
|
|
|
|
for add_special in [False, True]:
|
|
prompt = "vllm1 This is a test prompt."
|
|
tokens = tokenizer.encode(prompt, add_special_tokens=add_special)
|
|
|
|
response = requests.post(server.url_for("tokenize"),
|
|
json={
|
|
"add_special_tokens": add_special,
|
|
"model": model_name,
|
|
"prompt": prompt
|
|
})
|
|
response.raise_for_status()
|
|
|
|
assert response.json() == {
|
|
"tokens": tokens,
|
|
"count": len(tokens),
|
|
"max_model_len": 8192
|
|
}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name,tokenizer_name",
|
|
[(MODEL_NAME, MODEL_NAME), ("zephyr-lora2", "zephyr-lora2")],
|
|
indirect=["tokenizer_name"],
|
|
)
|
|
async def test_tokenize_chat(
|
|
server: RemoteOpenAIServer,
|
|
model_name: str,
|
|
tokenizer_name: str,
|
|
):
|
|
tokenizer = get_tokenizer(tokenizer_name=tokenizer_name,
|
|
tokenizer_mode="fast")
|
|
|
|
for add_generation in [False, True]:
|
|
for add_special in [False, True]:
|
|
conversation = [{
|
|
"role": "user",
|
|
"content": "Hi there!"
|
|
}, {
|
|
"role": "assistant",
|
|
"content": "Nice to meet you!"
|
|
}, {
|
|
"role": "user",
|
|
"content": "Can I ask a question? vllm1"
|
|
}]
|
|
for continue_final in [False, True]:
|
|
if add_generation and continue_final:
|
|
continue
|
|
if continue_final:
|
|
conversation.append({
|
|
"role": "assistant",
|
|
"content": "Sure,"
|
|
})
|
|
|
|
prompt = tokenizer.apply_chat_template(
|
|
add_generation_prompt=add_generation,
|
|
continue_final_message=continue_final,
|
|
conversation=conversation,
|
|
tokenize=False)
|
|
tokens = tokenizer.encode(prompt,
|
|
add_special_tokens=add_special)
|
|
|
|
response = requests.post(server.url_for("tokenize"),
|
|
json={
|
|
"add_generation_prompt":
|
|
add_generation,
|
|
"continue_final_message":
|
|
continue_final,
|
|
"add_special_tokens": add_special,
|
|
"messages": conversation,
|
|
"model": model_name
|
|
})
|
|
response.raise_for_status()
|
|
|
|
assert response.json() == {
|
|
"tokens": tokens,
|
|
"count": len(tokens),
|
|
"max_model_len": 8192
|
|
}
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize(
|
|
"model_name,tokenizer_name",
|
|
[(MODEL_NAME, MODEL_NAME), ("zephyr-lora2", "zephyr-lora2")],
|
|
indirect=["tokenizer_name"],
|
|
)
|
|
async def test_detokenize(
|
|
server: RemoteOpenAIServer,
|
|
model_name: str,
|
|
tokenizer_name: str,
|
|
):
|
|
tokenizer = get_tokenizer(tokenizer_name=tokenizer_name,
|
|
tokenizer_mode="fast")
|
|
|
|
prompt = "This is a test prompt. vllm1"
|
|
tokens = tokenizer.encode(prompt, add_special_tokens=False)
|
|
|
|
response = requests.post(server.url_for("detokenize"),
|
|
json={
|
|
"model": model_name,
|
|
"tokens": tokens
|
|
})
|
|
response.raise_for_status()
|
|
|
|
assert response.json() == {"prompt": prompt}
|