Lucas Wilkinson cc1dc7ed6d
[Core/DBO][2/N] Dual-Batch Overlap add DeepEP High Throughput support and Prefill support (#24845)
Signed-off-by: Sage Moore <sage@neuralmagic.com>
Signed-off-by: Lucas Wilkinson <lwilkins@redhat.com>
Signed-off-by: yewentao256 <zhyanwentao@126.com>
Signed-off-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Signed-off-by: Tyler Michael Smith <tyler@neuralmagic.com>
Co-authored-by: Sage Moore <sage@neuralmagic.com>
Co-authored-by: yewentao256 <zhyanwentao@126.com>
Co-authored-by: Tyler Michael Smith <tyler@neuralmagic.com>
2025-09-23 16:02:10 +00:00

303 lines
11 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Optional
import torch
import torch.distributed as dist
import vllm.envs as envs
from vllm.distributed import get_dp_group
from vllm.forward_context import get_forward_context
from vllm.logger import init_logger
from vllm.utils import has_deep_ep, has_pplx
from .base_device_communicator import All2AllManagerBase, Cache
logger = init_logger(__name__)
class NaiveAll2AllManager(All2AllManagerBase):
"""
A naive implementation of all2all communication.
It uses all-reduce under the hood, which is not
efficient at all. The main purpose is for testing and
debugging.
"""
def __init__(self, cpu_group):
super().__init__(cpu_group)
def naive_multicast(self, x: torch.Tensor,
cu_tokens_across_dp_cpu: torch.Tensor):
assert (len(x.shape) == 2)
buffer = torch.empty((cu_tokens_across_dp_cpu[-1], x.size(1)),
device=x.device,
dtype=x.dtype)
start = 0 if self.dp_rank == 0 else cu_tokens_across_dp_cpu[
self.dp_rank - 1]
end = cu_tokens_across_dp_cpu[self.dp_rank]
buffer[start:end, :].copy_(x)
for idx in range(self.dp_world_size):
start = 0 if idx == 0 else cu_tokens_across_dp_cpu[idx - 1]
end = cu_tokens_across_dp_cpu[idx]
self.dp_group.broadcast(buffer[start:end, :], idx)
return buffer
def dispatch(self, hidden_states: torch.Tensor,
router_logits: torch.Tensor):
cu_tokens_across_dp_cpu = get_forward_context(
).dp_metadata.cu_tokens_across_dp_cpu
hidden_states = self.naive_multicast(hidden_states,
cu_tokens_across_dp_cpu)
router_logits = self.naive_multicast(router_logits,
cu_tokens_across_dp_cpu)
return hidden_states, router_logits
def combine(self, hidden_states: torch.Tensor) -> torch.Tensor:
cu_tokens_across_dp_cpu = get_forward_context(
).dp_metadata.cu_tokens_across_dp_cpu
start = 0 if self.dp_rank == 0 else cu_tokens_across_dp_cpu[
self.dp_rank - 1]
end = cu_tokens_across_dp_cpu[self.dp_rank]
all_hidden_states = self.dp_group.all_reduce(hidden_states)
hidden_states = all_hidden_states[start:end, :]
return hidden_states
def destroy(self):
pass
class AgRsAll2AllManager(All2AllManagerBase):
"""
An implementation of all2all communication based on
all-gather (dispatch) and reduce-scatter (combine).
"""
def __init__(self, cpu_group):
super().__init__(cpu_group)
def dispatch(self, hidden_states: torch.Tensor,
router_logits: torch.Tensor):
"""
Gather hidden_states and router_logits from all dp ranks.
"""
sizes = get_forward_context(
).dp_metadata.get_chunk_sizes_across_dp_rank()
hidden_states, router_logits = get_dp_group().all_gatherv(
[hidden_states, router_logits],
dim=0,
sizes=sizes,
)
return hidden_states, router_logits
def combine(self, hidden_states: torch.Tensor) -> torch.Tensor:
"""
Reduce-scatter hidden_states across all dp ranks.
"""
sizes = get_forward_context(
).dp_metadata.get_chunk_sizes_across_dp_rank()
hidden_states = get_dp_group().reduce_scatterv(hidden_states,
dim=0,
sizes=sizes)
return hidden_states
def destroy(self):
pass
class PPLXAll2AllManager(All2AllManagerBase):
"""
All2All communication based on PPLX kernels.
"""
def __init__(self, cpu_group):
assert has_pplx(
), "pplx_kernels not found. Please follow https://github.com/vllm-project/vllm/blob/main/tools/ep_kernels/README.md to install pplx_kernels." # noqa
super().__init__(cpu_group)
if self.internode:
# inter-node communication needs nvshmem,
# intra-node communication uses p2p mapping directly
from pplx_kernels.nvshmem import (nvshmem_alloc_empty_unique_id,
nvshmem_get_unique_id,
nvshmem_init)
logger.debug(
"Initialize NVSHMEM for pplx_kernels: "
"rank=%d, world size=%d", self.rank, self.world_size)
uid = nvshmem_get_unique_id(
) if self.rank == 0 else nvshmem_alloc_empty_unique_id()
dist.broadcast(uid,
src=dist.get_process_group_ranks(self.cpu_group)[0],
group=self.cpu_group)
logger.debug("PPLX NVSHMEM UID = %s", uid)
nvshmem_init(uid, self.rank, self.world_size)
self.handle_cache = Cache()
def get_handle(self, kwargs):
import pplx_kernels as pplx
return self.handle_cache.get_or_create(
kwargs, pplx.AllToAll.internode
if self.internode else pplx.AllToAll.intranode)
def dispatch(self, hidden_states: torch.Tensor,
router_logits: torch.Tensor):
raise NotImplementedError
def combine(self, hidden_states: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
def destroy(self):
with self.handle_cache._lock:
for _, handle in self.handle_cache._cache.items():
handle.destroy()
if self.internode:
from pplx_kernels.nvshmem import nvshmem_finalize
logger.debug("PPLX NVSHMEM finalize")
nvshmem_finalize()
class DeepEPAll2AllManagerBase(All2AllManagerBase):
"""
All2All communication based on DeepEP High-Throughput kernels.
"""
def __init__(self, cpu_group):
assert has_deep_ep(
), "DeepEP kernels not found. Please follow https://github.com/vllm-project/vllm/blob/main/tools/ep_kernels/README.md to install DeepEP kernels." # noqa
super().__init__(cpu_group)
self.handle_cache = Cache()
# This is the DeepEP default. Stick to it till we can establish
# reasonable defaults based on profiling.
self.num_sms = 20
def get_handle(self, kwargs):
raise NotImplementedError
def dispatch(self, hidden_states: torch.Tensor,
router_logits: torch.Tensor):
raise NotImplementedError
def combine(self, hidden_states: torch.Tensor) -> torch.Tensor:
raise NotImplementedError
def destroy(self):
pass
class DeepEPHTAll2AllManager(DeepEPAll2AllManagerBase):
"""
All2All communication based on DeepEP High-Throughput kernels.
"""
def __init__(self, cpu_group):
super().__init__(cpu_group)
def _make_all2all_kwargs(self) -> dict[Any, Any]:
# Defaults for internode and intranode are taken from DeepEP tests.
num_nvl_bytes = envs.VLLM_DEEPEP_BUFFER_SIZE_MB * 1024 * 1024
num_rdma_bytes = None
num_qps_per_rank = None
if self.internode:
num_rdma_bytes = envs.VLLM_DEEPEP_BUFFER_SIZE_MB * 1024 * 1024
num_qps_per_rank = self.num_sms // 2
else:
num_rdma_bytes = 0
num_qps_per_rank = 1
assert num_rdma_bytes is not None
assert num_qps_per_rank is not None
return dict(group=self.cpu_group,
num_nvl_bytes=num_nvl_bytes,
num_rdma_bytes=num_rdma_bytes,
low_latency_mode=False,
num_qps_per_rank=num_qps_per_rank)
def get_handle(self, kwargs):
assert len(kwargs) == 0, (
"DeepEPHTAll2AllManager expects no arguments. All the required "
"args are computed in the Manager itself.")
import deep_ep
buffer_kwargs = self._make_all2all_kwargs()
logger.debug("DeepEP all2all args %s", buffer_kwargs)
handle: deep_ep.Buffer = self.handle_cache.get_or_create(
buffer_kwargs, deep_ep.Buffer)
return handle
def set_num_sms(self, num_sms: int):
import deep_ep
# Right now the buffers are sized for only what the kernels were
# created with. So we can only reduce the number of SMS used
# but not increase it.
if num_sms > self.num_sms:
num_sms = self.num_sms
deep_ep.Buffer.set_num_sms(num_sms)
class DeepEPLLAll2AllManager(DeepEPAll2AllManagerBase):
"""
All2All communication based on DeepEP Low-Latency kernels.
"""
def __init__(self, cpu_group):
super().__init__(cpu_group)
def _make_all2all_kwargs(
self,
max_num_tokens_per_dp_rank: int,
token_hidden_size: int,
num_ep_ranks: int,
num_global_experts: int,
num_local_experts: int,
) -> dict[Any, Any]:
"""
max_num_tokens_per_dp_rank : the maximum number of tokens a DP rank
can dispatch all the ranks must hold the same value.
token_hidden_size: the hidden dimension of each token.
num_ep_ranks: the number of EP group ranks.
num_global_experts: Number of experts in the model.
num_local_experts: Number of experts in an EP rank.
"""
import deep_ep
# Defaults for internode and intranode are taken from DeepEP tests.
num_nvl_bytes = envs.VLLM_DEEPEP_BUFFER_SIZE_MB * 1024 * 1024
num_qps_per_rank = num_local_experts
num_rdma_bytes = deep_ep.Buffer.get_low_latency_rdma_size_hint(
num_max_dispatch_tokens_per_rank=max_num_tokens_per_dp_rank,
hidden=token_hidden_size,
num_ranks=num_ep_ranks,
num_experts=num_global_experts)
assert num_rdma_bytes is not None
return dict(group=self.cpu_group,
num_nvl_bytes=num_nvl_bytes,
num_rdma_bytes=num_rdma_bytes,
low_latency_mode=True,
num_qps_per_rank=num_qps_per_rank)
def get_handle(self, kwargs):
"""
The kwargs for DeepEPLLAll2AllManager is dictated by
_make_all2all_kwargs.
"""
import deep_ep
buffer_kwargs = self._make_all2all_kwargs(**kwargs)
logger.debug("DeepEP all2all args %s", buffer_kwargs)
handle: deep_ep.Buffer = self.handle_cache.get_or_create(
buffer_kwargs, deep_ep.Buffer)
return handle
# DeepEP LL uses RDMA so no SMs are used for communication
def max_sms_used(self) -> Optional[int]:
return 0