vllm/vllm/v1/worker/tpu_model_runner.py
Woosuk Kwon cd4a72a28d
[V1][Spec decode] Move drafter to model runner (#13363)
Signed-off-by: Woosuk Kwon <woosuk.kwon@berkeley.edu>
2025-02-17 15:40:12 -08:00

1111 lines
45 KiB
Python

# SPDX-License-Identifier: Apache-2.0
import enum
import time
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple
from unittest.mock import patch
import numpy as np
import torch
import torch.distributed
import torch.nn as nn
# TPU XLA related
import torch_xla.core.xla_model as xm
import torch_xla.runtime as xr
from vllm.attention import AttentionMetadata
from vllm.attention.backends.abstract import AttentionType
from vllm.attention.layer import Attention
from vllm.config import VllmConfig
from vllm.forward_context import set_forward_context
from vllm.logger import init_logger
from vllm.model_executor.model_loader import get_model
from vllm.sampling_params import SamplingType
from vllm.utils import LayerBlockType, cdiv, is_pin_memory_available
from vllm.v1.attention.backends.pallas import (PallasAttentionBackend,
PallasMetadata)
from vllm.v1.kv_cache_interface import (FullAttentionSpec, KVCacheConfig,
KVCacheSpec)
from vllm.v1.outputs import LogprobsTensors, ModelRunnerOutput
from vllm.v1.utils import bind_kv_cache
from vllm.v1.worker.gpu_input_batch import CachedRequestState, InputBatch
if TYPE_CHECKING:
from vllm.v1.core.scheduler import SchedulerOutput
logger = init_logger(__name__)
# Here we utilize the behavior that out-of-bound index is ignored.
# FIXME(woosuk): Find a more reliable way to prevent possible bugs.
_PAD_SLOT_ID = 1_000_000_000
class ExecutionMode(enum.Enum):
PREFILL = enum.auto()
DECODE = enum.auto()
PREFIX_PREFILL = enum.auto()
def is_prefill(self) -> bool:
return self in (ExecutionMode.PREFILL, ExecutionMode.PREFIX_PREFILL)
@dataclass
class PromptDecodeInfo:
prompt_req_ids: List[str]
decode_req_ids: List[str]
prompt_scheduled_tokens: List[int]
@dataclass
class PromptData:
input_tokens: torch.Tensor
input_positions: torch.Tensor
attn_metadata: PallasMetadata
@dataclass
class DecodeData:
input_tokens: Optional[torch.Tensor] = None
input_positions: Optional[torch.Tensor] = None
attn_metadata: Optional[PallasMetadata] = None
class TPUModelRunner:
def __init__(
self,
vllm_config: VllmConfig,
device: torch.device,
):
self.vllm_config = vllm_config
self.model_config = vllm_config.model_config
self.cache_config = vllm_config.cache_config
self.lora_config = vllm_config.lora_config
self.load_config = vllm_config.load_config
self.parallel_config = vllm_config.parallel_config
self.scheduler_config = vllm_config.scheduler_config
self.speculative_config = vllm_config.speculative_config
self.prompt_adapter_config = vllm_config.prompt_adapter_config
self.observability_config = vllm_config.observability_config
self.device_config = vllm_config.device_config
model_config = self.model_config
cache_config = self.cache_config
scheduler_config = self.scheduler_config
parallel_config = self.parallel_config
self.device = device
self.pin_memory = is_pin_memory_available()
self.dtype = self.model_config.dtype
self.is_multimodal_model = model_config.is_multimodal_model
self.sliding_window = model_config.get_sliding_window()
self.block_size = cache_config.block_size
self.max_model_len = model_config.max_model_len
self.max_num_blocks_per_req = cdiv(self.max_model_len, self.block_size)
self.max_num_tokens = scheduler_config.max_num_batched_tokens
self.max_num_reqs = scheduler_config.max_num_seqs
# Model-related.
self.num_attn_layers = model_config.get_num_layers_by_block_type(
parallel_config, LayerBlockType.attention)
self.num_query_heads = model_config.get_num_attention_heads(
parallel_config)
self.num_kv_heads = model_config.get_num_kv_heads(parallel_config)
self.head_size = model_config.get_head_size()
self.hidden_size = model_config.get_hidden_size()
self.model: Optional[nn.Module] = None
# Persistent batch.
self.input_batch = InputBatch(
max_num_reqs=self.max_num_reqs,
max_model_len=self.max_model_len,
max_num_blocks_per_req=self.max_num_blocks_per_req,
device=self.device,
pin_memory=self.pin_memory,
vocab_size=self.model_config.get_vocab_size(),
)
# Request states.
self.requests: Dict[str, CachedRequestState] = {}
# req_id -> (input_id -> encoder_output)
self.encoder_cache: Dict[str, Dict[int, torch.Tensor]] = {}
# KV caches for forward pass
self.kv_caches: List[Tuple[torch.Tensor, torch.Tensor]] = []
# Cached torch/numpy tensors
self.num_swaps = 2
self.cur_swap_id = 0
self.input_ids_cpu = []
self.input_ids_np = []
self.input_positions_cpu = []
self.input_positions_np = []
self.slot_mapping_cpu = []
self.slot_mapping_np = []
self.prompt_context_lens_cpu = []
self.prompt_effective_query_lens_cpu = []
self.decode_context_lens_cpu = []
self.decode_context_lens_np = []
for _ in range(self.num_swaps):
self.input_ids_cpu.append(
torch.empty(self.max_num_tokens,
dtype=torch.int32,
device="cpu"))
self.input_ids_np.append(self.input_ids_cpu[-1].numpy())
self.input_positions_cpu.append(
torch.empty(self.max_num_tokens,
dtype=torch.int32,
device="cpu"))
self.input_positions_np.append(
self.input_positions_cpu[-1].numpy())
self.slot_mapping_cpu.append(
torch.empty(self.max_num_tokens,
dtype=torch.int64,
device="cpu"))
self.slot_mapping_np.append(self.slot_mapping_cpu[-1].numpy())
self.prompt_context_lens_cpu.append(
torch.empty((1), dtype=torch.int32, device="cpu"))
self.prompt_effective_query_lens_cpu.append(
torch.empty((1), dtype=torch.int32, device="cpu"))
self.decode_context_lens_cpu.append(
torch.empty(self.max_num_tokens,
dtype=torch.int32,
device="cpu"))
self.decode_context_lens_np.append(
self.decode_context_lens_cpu[-1].numpy())
# Range tensor with values [0 .. self.max_num_tokens - 1].
# Used to initialize positions / context_lens / seq_lens
self.arange_np = np.arange(self.max_num_tokens, dtype=np.int32)
def _update_states(self, scheduler_output: "SchedulerOutput") -> bool:
"""Update the cached states and the persistent batch with the scheduler
output.
The updated states are used by the `_prepare_inputs` function to create
the input GPU tensors for the model.
Returns:
True if there is a new/resumed/paused/finished request in the batch.
If False, we can skip copying SamplingMetadata to the GPU.
"""
# Remove finished requests from the cached states.
for req_id in scheduler_output.finished_req_ids:
self.requests.pop(req_id, None)
# Remove the finished requests from the persistent batch.
# NOTE(woosuk): There could be an edge case where finished_req_ids and
# scheduled_req_ids overlap. This happens when a request is aborted and
# then resubmitted with the same ID. In this case, we treat them as two
# distinct requests - clearing the cached states for the first request
# and handling the second as a new request.
removed_req_indices: List[int] = []
for req_id in scheduler_output.finished_req_ids:
req_index = self.input_batch.remove_request(req_id)
if req_index is not None:
removed_req_indices.append(req_index)
# Remove the unscheduled requests from the persistent batch.
# NOTE(woosuk): The unscheduled requests are either preempted requests
# or running requests that are not scheduled in this step. We remove
# them from the persistent batch but keep their cached states since
# they will be scheduled again sometime in the future.
scheduled_req_ids = scheduler_output.num_scheduled_tokens.keys()
cached_req_ids = self.input_batch.req_id_to_index.keys()
unscheduled_req_ids = cached_req_ids - scheduled_req_ids
# NOTE(woosuk): The persistent batch optimization assumes that
# consecutive batches contain mostly the same requests. If batches
# have low request overlap (e.g., alternating between two distinct
# sets of requests), this optimization becomes very inefficient.
for req_id in unscheduled_req_ids:
req_index = self.input_batch.remove_request(req_id)
assert req_index is not None
removed_req_indices.append(req_index)
req_ids_to_add: List[str] = []
# Add new requests to the cached states.
for new_req_data in scheduler_output.scheduled_new_reqs:
req_id = new_req_data.req_id
sampling_params = new_req_data.sampling_params
if sampling_params.sampling_type == SamplingType.RANDOM_SEED:
generator = torch.Generator(device=self.device)
generator.manual_seed(sampling_params.seed)
else:
generator = None
self.requests[req_id] = CachedRequestState(
req_id=req_id,
prompt_token_ids=new_req_data.prompt_token_ids,
prompt=new_req_data.prompt,
mm_inputs=new_req_data.mm_inputs,
mm_positions=new_req_data.mm_positions,
sampling_params=sampling_params,
generator=generator,
block_ids=new_req_data.block_ids,
num_computed_tokens=new_req_data.num_computed_tokens,
output_token_ids=[],
lora_request=new_req_data.lora_request,
)
req_ids_to_add.append(req_id)
# Update the states of the running/resumed requests.
for req_data in scheduler_output.scheduled_cached_reqs:
req_id = req_data.req_id
req_state = self.requests[req_id]
# Update the cached states.
req_state.num_computed_tokens = req_data.num_computed_tokens
if not req_data.resumed_from_preemption:
# Append the new blocks to the existing block IDs.
req_state.block_ids.extend(req_data.new_block_ids)
else:
# The request is resumed from preemption.
# Replace the existing block IDs with the new ones.
req_state.block_ids = req_data.new_block_ids
req_index = self.input_batch.req_id_to_index.get(req_id)
if req_index is None:
# The request is not in the persistent batch.
# The request was either preempted and resumed later, or was not
# scheduled in the previous step and needs to be added again.
req_ids_to_add.append(req_id)
continue
# Update the persistent batch.
self.input_batch.num_computed_tokens_cpu[req_index] = (
req_data.num_computed_tokens)
start_index = len(req_state.block_ids) - len(
req_data.new_block_ids)
self.input_batch.block_table.append_row(req_index, start_index,
req_data.new_block_ids)
# Add the new or resumed requests to the persistent batch.
# The smaller empty indices are filled first.
removed_req_indices = sorted(removed_req_indices, reverse=True)
for req_id in req_ids_to_add:
req_state = self.requests[req_id]
if removed_req_indices:
# Fill the empty index.
req_index = removed_req_indices.pop()
else:
# Append to the end.
req_index = None
self.input_batch.add_request(req_state, req_index)
# Condense the batched states if there are empty indices.
if removed_req_indices:
self.input_batch.condense(removed_req_indices)
return len(unscheduled_req_ids) > 0 or len(req_ids_to_add) > 0
def swap_step(self):
self.cur_swap_id = (self.cur_swap_id + 1) % self.num_swaps
def get_model(self) -> nn.Module:
assert self.model is not None
return self.model
def get_kv_cache_spec(self) -> KVCacheSpec:
"""
Generates the KVCacheSpec by parsing the kv cache format from each
Attention module in the static forward context.
Returns:
KVCacheSpec: A dictionary mapping layer names to their KV cache
format. Layers that do not need KV cache are not included.
"""
forward_ctx = self.vllm_config.compilation_config.static_forward_context
block_size = self.vllm_config.cache_config.block_size
kv_cache_spec: KVCacheSpec = {}
for layer_name, attn_module in forward_ctx.items():
# TODO: Support other attention modules, e.g., sliding window,
# cross-attention, MLA.
assert isinstance(attn_module, Attention)
if attn_module.attn_type == AttentionType.DECODER:
kv_cache_spec[layer_name] = FullAttentionSpec(
block_size=block_size,
num_kv_heads=attn_module.num_kv_heads,
head_size=attn_module.head_size,
dtype=attn_module.dtype,
)
elif attn_module.attn_type in (AttentionType.ENCODER,
AttentionType.ENCODER_ONLY):
# encoder-only attention does not need KV cache.
continue
elif attn_module.attn_type == AttentionType.ENCODER_DECODER:
raise NotImplementedError
else:
raise ValueError(
f"Unknown attention type: {attn_module.attn_type}")
return kv_cache_spec
def _get_prompts_and_decodes(
self,
scheduler_output: "SchedulerOutput",
) -> PromptDecodeInfo:
total_num_scheduled_tokens = scheduler_output.total_num_scheduled_tokens
assert total_num_scheduled_tokens > 0
num_reqs = self.input_batch.num_reqs
assert num_reqs > 0
# Traverse decodes first
decode_req_ids = []
for i in range(num_reqs):
req_id = self.input_batch.req_ids[i]
assert req_id is not None
num_computed_tokens = self.input_batch.num_computed_tokens_cpu[i]
num_prompt_tokens = self.input_batch.num_prompt_tokens[i]
num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
req_id]
if num_computed_tokens < num_prompt_tokens:
# This is prompt
break
# This is decode
assert num_scheduled_tokens == 1
decode_req_ids.append(req_id)
# Traverse prompts
prompt_req_ids = []
prompt_scheduled_tokens = []
for i in range(len(decode_req_ids), num_reqs):
req_id = self.input_batch.req_ids[i]
assert req_id is not None
num_computed_tokens = self.input_batch.num_computed_tokens_cpu[i]
num_prompt_tokens = self.input_batch.num_prompt_tokens[i]
num_scheduled_tokens = scheduler_output.num_scheduled_tokens[
req_id]
# Must be prompt
assert num_computed_tokens < num_prompt_tokens
prompt_req_ids.append(req_id)
prompt_scheduled_tokens.append(num_scheduled_tokens)
return PromptDecodeInfo(prompt_req_ids, decode_req_ids,
prompt_scheduled_tokens)
def _prepare_prompt(self, req_index: int,
num_scheduled_tokens: int) -> PromptData:
num_computed_tokens = self.input_batch.num_computed_tokens_cpu[
req_index]
num_prompt_tokens = self.input_batch.num_prompt_tokens[req_index]
# Must be prompt
assert num_computed_tokens < num_prompt_tokens
# Prompt len
prompt_len = num_scheduled_tokens
padded_prompt_len = _get_padded_prompt_len(prompt_len)
assert padded_prompt_len <= self.max_model_len
# Seq len
seq_len = num_computed_tokens + prompt_len
padded_seq_len = num_computed_tokens + padded_prompt_len
# Input tokens
input_tokens_cpu = self.input_batch.token_ids_cpu_tensor[
req_index, num_computed_tokens:padded_seq_len]
input_tokens_cpu[prompt_len:] = 0
# Input positions
input_positions_np = self.input_positions_np[
self.cur_swap_id][:padded_prompt_len]
np.add(num_computed_tokens,
self.arange_np[:padded_prompt_len],
out=input_positions_np)
input_positions_np[prompt_len:] = 0
# Slot mapping
block_table_np = \
self.input_batch.block_table.get_numpy_array()
block_numbers_np = block_table_np[req_index, input_positions_np //
self.block_size]
block_offsets_np = input_positions_np % self.block_size
slot_mapping_np = self.slot_mapping_np[
self.cur_swap_id][:padded_prompt_len]
np.add(block_numbers_np * self.block_size,
block_offsets_np,
out=slot_mapping_np)
slot_mapping_np[prompt_len:] = _PAD_SLOT_ID
# Block table
block_table_cpu = None
if num_computed_tokens > 0:
block_table_cpu = self.input_batch.block_table.get_cpu_tensor()
block_table_cpu = block_table_cpu[req_index]
# Context len
self.prompt_context_lens_cpu[self.cur_swap_id][0] = 0
if num_computed_tokens > 0:
self.prompt_context_lens_cpu[self.cur_swap_id][0] = seq_len
# Effective query len
self.prompt_effective_query_lens_cpu[self.cur_swap_id][0] = prompt_len
# Get final tensors
input_tokens = input_tokens_cpu.reshape(1, -1).to(self.device)
input_positions = self.input_positions_cpu[
self.cur_swap_id][:padded_prompt_len].reshape(1,
-1).to(self.device)
slot_mapping = self.slot_mapping_cpu[
self.cur_swap_id][:padded_prompt_len].reshape(1,
-1).to(self.device)
block_table = block_table_cpu.reshape(1, -1).to(
self.device) if block_table_cpu is not None else None
context_lens = self.prompt_context_lens_cpu[self.cur_swap_id].to(
self.device)
effective_query_lens = self.prompt_effective_query_lens_cpu[
self.cur_swap_id].to(self.device)
self.swap_step()
# Attn metadata
attn_metadata = PallasMetadata(
num_prefills=1,
num_prefill_tokens=0, # NOTE: This is not used.
num_decode_tokens=0,
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=True,
block_tables=block_table,
context_lens=context_lens,
effective_query_lens=effective_query_lens,
)
return PromptData(input_tokens, input_positions, attn_metadata)
def _prepare_decode(
self,
decode_req_ids: List[str],
) -> DecodeData:
# Batch size
batch_size = len(decode_req_ids)
padded_batch_size = _get_padded_batch_size(batch_size)
assert padded_batch_size <= self.max_model_len
# Init [0 .. batch_size - 1]
req_indices_np = self.arange_np[:padded_batch_size]
# Input positions
input_positions_np = self.input_positions_np[
self.cur_swap_id][:padded_batch_size]
np.add(self.input_batch.num_computed_tokens_cpu[:padded_batch_size],
0,
out=input_positions_np)
input_positions_np[batch_size:] = 0
input_positions_cpu = self.input_positions_cpu[
self.cur_swap_id][:padded_batch_size]
# Input tokens
token_indices_np = (
input_positions_np +
req_indices_np * self.input_batch.token_ids_cpu.shape[1])
input_tokens_cpu = self.input_ids_cpu[
self.cur_swap_id][:padded_batch_size]
torch.index_select(self.input_batch.token_ids_cpu_tensor.flatten(),
0,
torch.from_numpy(token_indices_np),
out=input_tokens_cpu)
input_tokens_cpu[batch_size:] = 0
# Slot mapping
block_table_indices_np = (
req_indices_np * self.max_num_blocks_per_req +
input_positions_np // self.block_size)
block_table_cpu = self.input_batch.block_table.get_cpu_tensor()
block_numbers_np = block_table_cpu.flatten(
)[block_table_indices_np].numpy()
block_offsets_np = input_positions_np % self.block_size
slot_mapping_np = self.slot_mapping_np[
self.cur_swap_id][:padded_batch_size]
np.add(block_numbers_np * self.block_size,
block_offsets_np,
out=slot_mapping_np)
slot_mapping_np[batch_size:] = _PAD_SLOT_ID
block_table_cpu = block_table_cpu[:padded_batch_size]
# Context lens
context_lens_np = self.decode_context_lens_np[
self.cur_swap_id][:padded_batch_size]
np.add(self.input_batch.num_computed_tokens_cpu[:padded_batch_size],
1,
out=context_lens_np)
context_lens_np[batch_size:] = 0
# Get final tensors
input_tokens = input_tokens_cpu.reshape(-1, 1).to(self.device)
input_positions = input_positions_cpu.reshape(-1, 1).to(self.device)
slot_mapping = self.slot_mapping_cpu[
self.cur_swap_id][:padded_batch_size].reshape(-1,
1).to(self.device)
block_table = block_table_cpu.to(self.device)
context_lens = self.decode_context_lens_cpu[
self.cur_swap_id][:padded_batch_size].to(self.device)
self.swap_step()
# Attn metadata
attn_metadata = PallasMetadata(
num_prefills=0,
num_prefill_tokens=0,
num_decode_tokens=padded_batch_size,
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=True,
block_tables=block_table,
context_lens=context_lens,
effective_query_lens=None,
)
return DecodeData(input_tokens=input_tokens,
input_positions=input_positions,
attn_metadata=attn_metadata)
@torch.no_grad()
def execute_model(
self,
scheduler_output: "SchedulerOutput",
) -> ModelRunnerOutput:
# Update cached state
self._update_states(scheduler_output)
# If necessary, swap decodes/prompts to have all decodes on the start
ensure_decodes_first(self.input_batch)
# Prepare prompts/decodes info
pd_info = self._get_prompts_and_decodes(scheduler_output)
# Init
num_prompts = len(pd_info.prompt_req_ids)
num_decodes = len(pd_info.decode_req_ids)
decode_data = None
sampled_token_ids = [0] * self.input_batch.num_reqs
# Run each prompt individually
is_first = True
for i in range(num_prompts):
req_id = pd_info.prompt_req_ids[i]
req_index = num_decodes + i
assert req_index == self.input_batch.req_id_to_index[
req_id] # TODO: Remove
req_state = self.requests[req_id]
num_scheduled_tokens = pd_info.prompt_scheduled_tokens[i]
prompt_len = num_scheduled_tokens
seq_len = req_state.num_computed_tokens + num_scheduled_tokens
# Prepare first prompt
if is_first:
prompt_data = self._prepare_prompt(req_index,
num_scheduled_tokens)
is_first = False
# Run forward pass
with set_forward_context(prompt_data.attn_metadata,
self.vllm_config):
assert self.model is not None
selected_token_ids = self.model(prompt_data.input_tokens,
prompt_data.input_positions,
prompt_data.attn_metadata,
self.kv_caches)
# In parallel to TPU execution, prepare the next iteration
if i < num_prompts - 1:
# There is next prompt => prepare it
prompt_data = self._prepare_prompt(
req_index + 1, pd_info.prompt_scheduled_tokens[i + 1])
elif i == num_prompts - 1 and num_decodes > 0:
# There is next decode => prepare it
decode_data = self._prepare_decode(pd_info.decode_req_ids)
# Update cached state (if prompt is fully done)
if seq_len >= len(req_state.prompt_token_ids):
# Transfer sampled tokens from TPU to CPU
selected_token_ids_cpu = selected_token_ids.cpu()
# Get output token
token_id = selected_token_ids_cpu[prompt_len - 1].item()
sampled_token_ids[req_index] = token_id
# Add output token to the request
self.input_batch.token_ids_cpu[req_index, seq_len] = token_id
self.input_batch.num_tokens[req_index] += 1
req_state.output_token_ids.append(token_id)
# Run decodes (a single batch)
if num_decodes > 0:
# Prepare decode (if was not yet prepared)
if decode_data is None:
decode_data = self._prepare_decode(pd_info.decode_req_ids)
# Run forward pass
with set_forward_context(decode_data.attn_metadata,
self.vllm_config):
assert self.model is not None
selected_token_ids = self.model(decode_data.input_tokens,
decode_data.input_positions,
decode_data.attn_metadata,
self.kv_caches)
# Transfer sampled tokens from TPU to CPU
decode_token_ids_cpu = selected_token_ids.cpu()
# Convert to list
decode_token_ids_list = decode_token_ids_cpu.tolist()
# Update cached state for each decode request
for i in range(num_decodes):
req_id = pd_info.decode_req_ids[i]
req_index = i
assert req_index == self.input_batch.req_id_to_index[
req_id] # TODO: Remove
req_state = self.requests[req_id]
seq_len = req_state.num_computed_tokens + 1
token_id = decode_token_ids_list[i]
sampled_token_ids[req_index] = token_id
self.input_batch.token_ids_cpu[req_index, seq_len] = token_id
self.input_batch.num_tokens[req_index] += 1
req_state.output_token_ids.append(token_id)
# Create output.
all_req_ids = pd_info.decode_req_ids + pd_info.prompt_req_ids
prompt_logprobs_dict: Dict[str, Optional[LogprobsTensors]] = {}
for req_id in all_req_ids:
prompt_logprobs_dict[req_id] = None
model_runner_output = ModelRunnerOutput(
req_ids=all_req_ids,
req_id_to_index=self.input_batch.req_id_to_index,
sampled_token_ids=[[token_id] for token_id in sampled_token_ids],
spec_token_ids=None,
logprobs=None,
prompt_logprobs_dict=prompt_logprobs_dict, # type: ignore[arg-type]
)
return model_runner_output
def load_model(self) -> None:
self.device = self.device_config.device
# NOTE(woosuk): While the executor assigns the TP ranks to the worker
# process, the ranks can be different from the ranks internally assigned
# by the xm runtime. Therefore, there is a mismatch in the rank
# assignment between the gloo (cpu) runtime and the xm (tpu) runtime.
# This is not a problem in linear layers because all-reduce is
# rank-agnostic. However, it matters for all-gather as the ranks
# determine the order of concatenating the output tensors.
# As a workaround, we use the xm's rank assignment only when loading
# the embedding weights.
xm_tp_rank = xr.global_ordinal()
with patch(
"vllm.model_executor.layers.vocab_parallel_embedding."
"get_tensor_model_parallel_rank",
return_value=xm_tp_rank):
model = get_model(vllm_config=self.vllm_config)
model = model.eval()
xm.mark_step()
xm.wait_device_ops()
model = ModelWrapperV1(model)
self.model = torch.compile(model,
backend="openxla",
fullgraph=True,
dynamic=False)
def dummy_run(
self,
kv_caches,
num_tokens: int,
seq_len: Optional[int] = None,
exec_mode: Optional[ExecutionMode] = None,
) -> None:
assert seq_len is not None
assert exec_mode is not None
exec_mode = ExecutionMode(exec_mode)
if exec_mode.is_prefill():
seq_len = (seq_len + 15) // 16 * 16
token_ids = torch.zeros((num_tokens, seq_len),
dtype=torch.int32,
device=self.device)
position_ids = torch.zeros((num_tokens, seq_len),
dtype=torch.int32,
device=self.device)
slot_mapping = torch.zeros((num_tokens, seq_len),
dtype=torch.int64,
device=self.device)
if exec_mode == ExecutionMode.PREFILL:
attn_metadata = PallasMetadata(
num_prefills=num_tokens,
num_prefill_tokens=num_tokens * seq_len,
num_decode_tokens=0,
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=True,
block_tables=None,
context_lens=None,
effective_query_lens=None,
)
else:
context_lens = torch.ones((num_tokens, ),
dtype=torch.int32,
device=self.device)
block_tables = torch.zeros(
(num_tokens, self.max_num_blocks_per_req),
dtype=torch.int32,
device=self.device)
effective_query_lens = torch.ones_like(context_lens)
attn_metadata = PallasMetadata(
num_prefills=num_tokens,
num_prefill_tokens=num_tokens * seq_len,
num_decode_tokens=0,
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=True,
block_tables=block_tables,
context_lens=context_lens,
effective_query_lens=effective_query_lens,
)
else:
assert seq_len == 1
token_ids = torch.zeros((num_tokens, seq_len),
dtype=torch.int32,
device=self.device)
position_ids = torch.zeros((num_tokens, seq_len),
dtype=torch.int32,
device=self.device)
slot_mapping = torch.zeros((num_tokens, seq_len),
dtype=torch.int64,
device=self.device)
block_tables = torch.zeros(
(num_tokens, self.max_num_blocks_per_req),
dtype=torch.int32,
device=self.device)
context_lens = torch.ones((num_tokens, ),
dtype=torch.int32,
device=self.device)
attn_metadata = PallasMetadata(
num_prefills=0,
num_prefill_tokens=0,
num_decode_tokens=num_tokens * seq_len,
slot_mapping=slot_mapping,
multi_modal_placeholder_index_maps=None,
enable_kv_scales_calculation=True,
block_tables=block_tables,
context_lens=context_lens,
)
# NOTE(woosuk): There are two stages of compilation: torch.compile and
# XLA compilation. Using `mark_dynamic` can reduce the torch.compile
# overhead by reusing the FX graph for different shapes.
# However, the XLA graph will still require static shapes and needs to
# be re-compiled for every different shapes. This overhead is inevitable
# in the first run, but can be skipped afterwards as we cache the XLA
# graphs in the disk (VLLM_XLA_CACHE_PATH).
if exec_mode.is_prefill():
# Prefll
torch._dynamo.mark_dynamic(token_ids, 1)
torch._dynamo.mark_dynamic(position_ids, 1)
torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 1)
else:
# Decode
torch._dynamo.mark_dynamic(token_ids, 0)
torch._dynamo.mark_dynamic(position_ids, 0)
torch._dynamo.mark_dynamic(attn_metadata.slot_mapping, 0)
torch._dynamo.mark_dynamic(attn_metadata.context_lens, 0)
torch._dynamo.mark_dynamic(attn_metadata.block_tables, 0)
with set_forward_context(attn_metadata, self.vllm_config, 0):
assert self.model is not None
self.model(token_ids, position_ids, attn_metadata, kv_caches)
def capture_model(self) -> None:
"""Compile the model."""
# Prefill
logger.info(
"Compiling the model with different input shapes for prefill:")
start = time.time()
for batch_size in [1]:
seq_len = 16
while seq_len <= self.model_config.max_model_len:
self.dummy_run(self.kv_caches,
batch_size,
seq_len,
exec_mode=ExecutionMode.PREFILL)
xm.wait_device_ops()
logger.info(" batch_size: %d, seq_len: %d", batch_size,
seq_len)
num_tokens = batch_size * seq_len
if num_tokens >= self.scheduler_config.max_num_batched_tokens:
break
seq_len = seq_len * 2
end = time.time()
logger.info(" -- Compilation for prefill done in %.2f [secs].",
end - start)
# Prefix prefill
if self.scheduler_config.enable_chunked_prefill:
logger.info("Compiling the model with different input shapes for "
"prefix prefill:")
start = time.time()
for batch_size in [1]:
seq_len = 16
while seq_len <= self.model_config.max_model_len:
self.dummy_run(self.kv_caches,
batch_size,
seq_len,
exec_mode=ExecutionMode.PREFIX_PREFILL)
xm.wait_device_ops()
logger.info(" batch_size: %d, seq_len: %d", batch_size,
seq_len)
num_tokens = batch_size * seq_len
if (num_tokens
>= self.scheduler_config.max_num_batched_tokens):
break
seq_len = seq_len * 2
end = time.time()
logger.info(
" -- Compilation for prefix prefill done in %.2f [secs].",
end - start)
# Decode
logger.info(
"Compiling the model with different input shapes for decode:")
start = time.time()
seq_len = 1
batch_size = 8 # Must be in sync with _get_padded_batch_size()
while True:
self.dummy_run(self.kv_caches,
batch_size,
seq_len,
exec_mode=ExecutionMode.DECODE)
xm.wait_device_ops()
logger.info(" batch_size: %d, seq_len: %d", batch_size, seq_len)
if batch_size >= self.scheduler_config.max_num_seqs:
break
batch_size = batch_size + 16 if batch_size >= 16 else batch_size * 2
end = time.time()
logger.info(" -- Compilation for decode done in %.2f [secs].",
end - start)
def initialize_kv_cache(self, kv_cache_config: KVCacheConfig) -> None:
"""
Initialize KV cache based on `kv_cache_config`.
Args:
kv_cache_config: Configuration for the KV cache, including the KV
cache size of each layer
"""
if len(kv_cache_config.groups) > 1:
raise NotImplementedError(
"Hybrid models with more than one KV cache type are not "
"supported yet.")
kv_caches: Dict[str, torch.Tensor] = {}
for layer_name, layer_spec in kv_cache_config.kv_cache_spec.items():
tensor_config = kv_cache_config.tensors[layer_name]
assert tensor_config.size % layer_spec.page_size_bytes == 0
num_blocks = tensor_config.size // layer_spec.page_size_bytes
if isinstance(layer_spec, FullAttentionSpec):
kv_cache_shape = PallasAttentionBackend.get_kv_cache_shape(
num_blocks, layer_spec.block_size, layer_spec.num_kv_heads,
layer_spec.head_size)
dtype = layer_spec.dtype
tpu_k_cache = torch.zeros(kv_cache_shape,
dtype=dtype,
device=self.device)
tpu_v_cache = torch.zeros_like(tpu_k_cache)
kv_caches[layer_name] = (tpu_k_cache, tpu_v_cache)
else:
raise NotImplementedError
bind_kv_cache(
kv_caches,
self.vllm_config.compilation_config.static_forward_context,
self.kv_caches)
class ModelWrapperV1(nn.Module):
def __init__(self, model: nn.Module):
super().__init__()
self.model = model
def forward(
self,
token_ids: torch.Tensor,
position_ids: torch.Tensor,
attn_metadata: AttentionMetadata,
kv_caches: List[Tuple[torch.Tensor, torch.Tensor]],
) -> torch.Tensor:
"""Executes the forward pass of the model and samples the next token.
Args:
token_ids: The input token IDs of shape [batch_size, seq_len].
position_ids: The input position IDs of shape [batch_size, seq_len].
attn_metadata: The Pallas attention metadata.
input_lens: The actual input lengths of shape [batch_size].
t: The sampling temperature of shape [batch_size].
p: The top-p probability of shape [batch_size].
num_samples: Number of samples to draw from each logits vector.
kv_caches: The key and value caches. They can be None during the
memory profiling at initialization.
"""
# Skip this in memory profiling at initialization.
if attn_metadata is not None and kv_caches[0][0].numel() > 0:
# index_copy_(slot_mapping) only works when the inserted dimension
# is 0. However, the KV cache in the Pallas backend has the shape
# [num_kv_heads, num_blocks, block_size, head_size]. To make it
# work, we need to flatten the first three dimensions and modify
# the slot_mapping accordingly.
num_kv_heads, num_blocks, block_size, _ = kv_caches[0][0].shape
slot_mapping = attn_metadata.slot_mapping
slot_mapping = slot_mapping.flatten()
head_indicies = torch.arange(0,
num_kv_heads,
device=slot_mapping.device,
dtype=slot_mapping.dtype)
head_indicies *= block_size * num_blocks
slot_mapping = slot_mapping.repeat_interleave(num_kv_heads).view(
-1, num_kv_heads)
slot_mapping = slot_mapping + head_indicies.view(1, -1)
slot_mapping = slot_mapping.flatten()
attn_metadata.slot_mapping = slot_mapping
assert self.model is not None
hidden_states = self.model(
token_ids,
position_ids,
kv_caches,
attn_metadata,
)
hidden_states = hidden_states.flatten(0, 1)
logits = self.model.compute_logits(hidden_states, None)
# Greedy sampling.
argmax_token_ids = torch.argmax(logits, dim=-1, keepdim=True)
argmax_token_ids = argmax_token_ids.squeeze(dim=-1)
return argmax_token_ids
def swap_positions(b: InputBatch, id_1, id_2):
assert id_1 != id_2
req_id_1 = b.req_ids[id_1]
req_id_2 = b.req_ids[id_2]
assert req_id_1 is not None
assert req_id_2 is not None
assert id_1 == b.req_id_to_index[req_id_1]
assert id_2 == b.req_id_to_index[req_id_2]
b.req_ids[id_1], b.req_ids[id_2] = b.req_ids[id_2], b.req_ids[id_1]
b.req_id_to_index[req_id_1], b.req_id_to_index[
req_id_2] = b.req_id_to_index[req_id_2], b.req_id_to_index[req_id_1]
ids = [id_1, id_2]
rev_ids = [id_2, id_1]
b.num_tokens[ids] = b.num_tokens[rev_ids]
b.token_ids_cpu[ids] = b.token_ids_cpu[rev_ids]
b.num_prompt_tokens[ids] = b.num_prompt_tokens[rev_ids]
b.num_computed_tokens_cpu[ids] = b.num_computed_tokens_cpu[rev_ids]
b.block_table.swap_row(id_1, id_2)
b.temperature_cpu[ids] = b.temperature_cpu[rev_ids]
b.top_p_cpu[ids] = b.top_p_cpu[rev_ids]
b.top_k_cpu[ids] = b.top_k_cpu[rev_ids]
b.frequency_penalties_cpu[ids] = b.frequency_penalties_cpu[rev_ids]
b.presence_penalties_cpu[ids] = b.presence_penalties_cpu[rev_ids]
b.repetition_penalties_cpu[ids] = b.repetition_penalties_cpu[rev_ids]
b.min_tokens[id_1], b.min_tokens[id_2] = b.min_tokens[id_2], b.min_tokens[
id_1]
b.stop_token_ids[id_1], b.stop_token_ids[id_2] = b.stop_token_ids[
id_2], b.stop_token_ids[id_1]
gen_1 = b.generators.pop(id_1, None)
gen_2 = b.generators.pop(id_2, None)
if gen_1 is not None:
b.generators[id_2] = gen_1
if gen_2 is not None:
b.generators[id_1] = gen_2
def ensure_decodes_first(b: InputBatch):
num_reqs = b.num_reqs
while True:
# Find the first prompt index
first_prompt_index = None
for i in range(num_reqs):
if b.num_computed_tokens_cpu[i] < b.num_prompt_tokens[i]:
first_prompt_index = i
break
if first_prompt_index is None:
break
# Find the last decode index
last_decode_index = None
for i in reversed(range(num_reqs)):
if b.num_computed_tokens_cpu[i] >= b.num_prompt_tokens[i]:
last_decode_index = i
break
if last_decode_index is None:
break
# Sanity
assert first_prompt_index != last_decode_index
# Check if done
if first_prompt_index > last_decode_index:
break
# Swap
swap_positions(b, first_prompt_index, last_decode_index)
def _get_padded_prompt_len(x: int) -> int:
# NOTE(woosuk): The pallas FlashAttention kernel requires the sequence
# length to be a multiple of 16. We pad the prompt length to the nearest
# multiple of 16. This is also good for performance.
if x <= 16:
return 16
return 1 << (x - 1).bit_length()
def _get_padded_batch_size(batch_size: int) -> int:
# The GMM Pallas kernel requires num_tokens * topk to be a multiple of 16.
# To meet this requirement in the simplest way, we set the minimal batch
# size to 8.
if batch_size <= 8:
return 8
else:
return ((batch_size + 15) // 16) * 16