mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-22 04:55:01 +08:00
289 lines
9.4 KiB
Python
289 lines
9.4 KiB
Python
from typing import (TYPE_CHECKING, Any, Dict, Generic, Iterable, List,
|
|
Optional, Tuple, Union, cast)
|
|
|
|
from typing_extensions import NotRequired, TypedDict, TypeVar
|
|
|
|
if TYPE_CHECKING:
|
|
from vllm.multimodal import MultiModalDataDict
|
|
|
|
|
|
class TextPrompt(TypedDict):
|
|
"""Schema for a text prompt."""
|
|
|
|
prompt: str
|
|
"""The input text to be tokenized before passing to the model."""
|
|
|
|
multi_modal_data: NotRequired["MultiModalDataDict"]
|
|
"""
|
|
Optional multi-modal data to pass to the model,
|
|
if the model supports it.
|
|
"""
|
|
|
|
mm_processor_kwargs: NotRequired[Dict[str, Any]]
|
|
"""
|
|
Optional multi-modal processor kwargs to be forwarded to the
|
|
multimodal input mapper & processor. Note that if multiple modalities
|
|
have registered mappers etc for the model being considered, we attempt
|
|
to pass the mm_processor_kwargs to each of them.
|
|
"""
|
|
|
|
|
|
class TokensPrompt(TypedDict):
|
|
"""Schema for a tokenized prompt."""
|
|
|
|
prompt_token_ids: List[int]
|
|
"""A list of token IDs to pass to the model."""
|
|
|
|
multi_modal_data: NotRequired["MultiModalDataDict"]
|
|
"""
|
|
Optional multi-modal data to pass to the model,
|
|
if the model supports it.
|
|
"""
|
|
|
|
mm_processor_kwargs: NotRequired[Dict[str, Any]]
|
|
"""
|
|
Optional multi-modal processor kwargs to be forwarded to the
|
|
multimodal input mapper & processor. Note that if multiple modalities
|
|
have registered mappers etc for the model being considered, we attempt
|
|
to pass the mm_processor_kwargs to each of them.
|
|
"""
|
|
|
|
|
|
SingletonPrompt = Union[str, TextPrompt, TokensPrompt]
|
|
"""
|
|
Set of possible schemas for a single prompt:
|
|
|
|
- A text prompt (:class:`str` or :class:`TextPrompt`)
|
|
- A tokenized prompt (:class:`TokensPrompt`)
|
|
|
|
Note that "singleton" is as opposed to a data structure
|
|
which encapsulates multiple prompts, i.e. of the sort
|
|
which may be utilized for encoder/decoder models when
|
|
the user desires to express both the encoder & decoder
|
|
prompts explicitly, i.e. :class:`ExplicitEncoderDecoderPrompt`
|
|
|
|
A prompt of type :class:`SingletonPrompt` may be employed
|
|
as (1) input to a decoder-only model, (2) input to
|
|
the encoder of an encoder/decoder model, in the scenario
|
|
where the decoder-prompt is not specified explicitly, or
|
|
(3) as a member of a larger data structure encapsulating
|
|
more than one prompt, i.e. :class:`ExplicitEncoderDecoderPrompt`
|
|
"""
|
|
|
|
_T1_co = TypeVar("_T1_co",
|
|
bound=SingletonPrompt,
|
|
default=SingletonPrompt,
|
|
covariant=True)
|
|
_T2_co = TypeVar("_T2_co",
|
|
bound=SingletonPrompt,
|
|
default=SingletonPrompt,
|
|
covariant=True)
|
|
|
|
|
|
# TODO: Make fields ReadOnly once mypy supports it
|
|
class ExplicitEncoderDecoderPrompt(TypedDict, Generic[_T1_co, _T2_co]):
|
|
"""
|
|
Represents an encoder/decoder model input prompt,
|
|
comprising an explicit encoder prompt and a decoder prompt.
|
|
|
|
The encoder and decoder prompts, respectively, may be formatted
|
|
according to any of the :class:`SingletonPrompt` schemas,
|
|
and are not required to have the same schema.
|
|
|
|
Only the encoder prompt may have multi-modal data. mm_processor_kwargs
|
|
should be at the top-level, and should not be set in the encoder/decoder
|
|
prompts, since they are agnostic to the encoder/decoder.
|
|
|
|
Note that an :class:`ExplicitEncoderDecoderPrompt` may not
|
|
be used as an input to a decoder-only model,
|
|
and that the :code:`encoder_prompt` and :code:`decoder_prompt`
|
|
fields of this data structure themselves must be
|
|
:class:`SingletonPrompt` instances.
|
|
"""
|
|
|
|
encoder_prompt: _T1_co
|
|
|
|
decoder_prompt: Optional[_T2_co]
|
|
|
|
mm_processor_kwargs: NotRequired[Dict[str, Any]]
|
|
|
|
|
|
PromptType = Union[SingletonPrompt, ExplicitEncoderDecoderPrompt]
|
|
"""
|
|
Set of possible schemas for an LLM input, including
|
|
both decoder-only and encoder/decoder input types:
|
|
|
|
- A text prompt (:class:`str` or :class:`TextPrompt`)
|
|
- A tokenized prompt (:class:`TokensPrompt`)
|
|
- A single data structure containing both an encoder and a decoder prompt
|
|
(:class:`ExplicitEncoderDecoderPrompt`)
|
|
"""
|
|
|
|
|
|
class TokenInputs(TypedDict):
|
|
"""Represents token-based inputs."""
|
|
prompt_token_ids: List[int]
|
|
"""The token IDs of the prompt."""
|
|
|
|
prompt: NotRequired[Optional[str]]
|
|
"""
|
|
The original prompt text corresponding to the token IDs, if available.
|
|
"""
|
|
|
|
multi_modal_data: NotRequired[Optional["MultiModalDataDict"]]
|
|
"""
|
|
Optional multi-modal data to pass to the model,
|
|
if the model supports it.
|
|
"""
|
|
|
|
mm_processor_kwargs: NotRequired[Optional[Dict[str, Any]]]
|
|
"""
|
|
Optional multi-modal processor kwargs to be forwarded to the
|
|
multimodal input mapper & processor. Note that if multiple modalities
|
|
have registered mappers etc for the model being considered, we attempt
|
|
to pass the mm_processor_kwargs to each of them.
|
|
"""
|
|
|
|
|
|
def token_inputs(
|
|
prompt_token_ids: List[int],
|
|
prompt: Optional[str] = None,
|
|
multi_modal_data: Optional["MultiModalDataDict"] = None,
|
|
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> TokenInputs:
|
|
"""Construct :class:`TokenInputs` from optional values."""
|
|
inputs = TokenInputs(prompt_token_ids=prompt_token_ids)
|
|
|
|
if prompt is not None:
|
|
inputs["prompt"] = prompt
|
|
if multi_modal_data is not None:
|
|
inputs["multi_modal_data"] = multi_modal_data
|
|
if mm_processor_kwargs is not None:
|
|
inputs["mm_processor_kwargs"] = mm_processor_kwargs
|
|
|
|
return inputs
|
|
|
|
|
|
SingletonInputs = TokenInputs
|
|
"""
|
|
A processed :class:`SingletonPrompt` which can be passed to
|
|
:class:`vllm.sequence.Sequence`.
|
|
"""
|
|
|
|
DecoderOnlyInputs = TokenInputs
|
|
"""
|
|
The inputs in :class:`~vllm.LLMEngine` before they are
|
|
passed to the model executor.
|
|
This specifies the data required for decoder-only models.
|
|
"""
|
|
|
|
|
|
class EncoderDecoderInputs(TokenInputs):
|
|
"""
|
|
The inputs in :class:`~vllm.LLMEngine` before they are
|
|
passed to the model executor.
|
|
|
|
This specifies the required data for encoder-decoder models.
|
|
"""
|
|
encoder_prompt_token_ids: List[int]
|
|
"""The token IDs of the encoder prompt."""
|
|
|
|
encoder_prompt: NotRequired[Optional[str]]
|
|
"""
|
|
The original encoder prompt text corresponding to the token IDs, if
|
|
available.
|
|
"""
|
|
|
|
encoder_multi_modal_data: NotRequired[Optional["MultiModalDataDict"]]
|
|
"""
|
|
Optional multi-modal data to pass to the encoder model,
|
|
if the model supports it.
|
|
"""
|
|
|
|
|
|
_T1 = TypeVar("_T1", bound=SingletonPrompt, default=SingletonPrompt)
|
|
_T2 = TypeVar("_T2", bound=SingletonPrompt, default=SingletonPrompt)
|
|
|
|
|
|
def build_explicit_enc_dec_prompt(
|
|
encoder_prompt: _T1,
|
|
decoder_prompt: Optional[_T2],
|
|
mm_processor_kwargs: Optional[Dict[str, Any]] = None,
|
|
) -> ExplicitEncoderDecoderPrompt[_T1, _T2]:
|
|
if mm_processor_kwargs is None:
|
|
mm_processor_kwargs = {}
|
|
return ExplicitEncoderDecoderPrompt(
|
|
encoder_prompt=encoder_prompt,
|
|
decoder_prompt=decoder_prompt,
|
|
mm_processor_kwargs=mm_processor_kwargs)
|
|
|
|
|
|
def zip_enc_dec_prompts(
|
|
enc_prompts: Iterable[_T1],
|
|
dec_prompts: Iterable[Optional[_T2]],
|
|
mm_processor_kwargs: Optional[Union[Iterable[Dict[str, Any]],
|
|
Dict[str, Any]]] = None,
|
|
) -> List[ExplicitEncoderDecoderPrompt[_T1, _T2]]:
|
|
"""
|
|
Zip encoder and decoder prompts together into a list of
|
|
:class:`ExplicitEncoderDecoderPrompt` instances. mm_processor_kwargs
|
|
may also be provided; if a dict is passed, the same dictionary will be
|
|
used for every encoder/decoder prompt. If an iterable is provided, it will
|
|
be zipped with the encoder/decoder prompts.
|
|
"""
|
|
if mm_processor_kwargs is None:
|
|
mm_processor_kwargs = cast(Dict[str, Any], {})
|
|
if isinstance(mm_processor_kwargs, dict):
|
|
return [
|
|
build_explicit_enc_dec_prompt(
|
|
encoder_prompt, decoder_prompt,
|
|
cast(Dict[str, Any], mm_processor_kwargs))
|
|
for (encoder_prompt,
|
|
decoder_prompt) in zip(enc_prompts, dec_prompts)
|
|
]
|
|
return [
|
|
build_explicit_enc_dec_prompt(encoder_prompt, decoder_prompt,
|
|
mm_proc_kwargs)
|
|
for (encoder_prompt, decoder_prompt, mm_proc_kwargs
|
|
) in zip(enc_prompts, dec_prompts, mm_processor_kwargs)
|
|
]
|
|
|
|
|
|
def to_enc_dec_tuple_list(
|
|
enc_dec_prompts: Iterable[ExplicitEncoderDecoderPrompt[_T1, _T2]],
|
|
) -> List[Tuple[_T1, Optional[_T2]]]:
|
|
return [(enc_dec_prompt["encoder_prompt"],
|
|
enc_dec_prompt["decoder_prompt"])
|
|
for enc_dec_prompt in enc_dec_prompts]
|
|
|
|
|
|
def __getattr__(name: str):
|
|
import warnings
|
|
|
|
if name == "PromptInput":
|
|
msg = ("PromptInput has been renamed to PromptType. "
|
|
"The original name will be removed in an upcoming version.")
|
|
|
|
warnings.warn(DeprecationWarning(msg), stacklevel=2)
|
|
|
|
return PromptType
|
|
|
|
if name == "LLMInputs":
|
|
msg = ("LLMInputs has been renamed to DecoderOnlyInputs. "
|
|
"The original name will be removed in an upcoming version.")
|
|
|
|
warnings.warn(DeprecationWarning(msg), stacklevel=2)
|
|
|
|
return DecoderOnlyInputs
|
|
|
|
if name == "EncoderDecoderLLMInputs":
|
|
msg = (
|
|
"EncoderDecoderLLMInputs has been renamed to EncoderDecoderInputs. "
|
|
"The original name will be removed in an upcoming version.")
|
|
|
|
warnings.warn(DeprecationWarning(msg), stacklevel=2)
|
|
|
|
return EncoderDecoderInputs
|
|
|
|
raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
|