Wenxiang 1248e8506a
[Model] Adding support for MSFT Phi-3.5-MoE (#7729)
Co-authored-by: Your Name <you@example.com>
Co-authored-by: Zeqi Lin <zelin@microsoft.com>
Co-authored-by: Zeqi Lin <Zeqi.Lin@microsoft.com>
2024-08-30 13:42:57 -06:00

180 lines
7.2 KiB
Python

from typing import Any, Callable, Dict, List, Optional
import torch
from vllm.distributed import get_tensor_model_parallel_rank, get_tp_group
from vllm.model_executor.layers.fused_moe import FusedMoE, FusedMoEMethodBase
from vllm.model_executor.layers.linear import (LinearBase,
UnquantizedLinearMethod)
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.utils import set_weight_attrs
class ExpertsInt8Config(QuantizationConfig):
"""Config class for Int8 experts quantization."""
def __init__(self) -> None:
pass
@classmethod
def get_name(cls) -> str:
return "experts_int8"
@classmethod
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
return [torch.bfloat16, torch.half]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> List[str]:
return []
@classmethod
def from_config(cls, config: Dict[str, Any]) -> "ExpertsInt8Config":
return cls()
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase):
return UnquantizedLinearMethod()
elif isinstance(layer, FusedMoE):
return ExpertsInt8MoEMethod(self)
return None
def get_scaled_act_names(self) -> List[str]:
return []
class ExpertsInt8MoEMethod(FusedMoEMethodBase):
def __init__(self, quant_config: ExpertsInt8Config):
self.quant_config = quant_config
def create_weights(self, layer: torch.nn.Module, num_experts: int,
hidden_size: int, intermediate_size: int,
params_dtype: torch.dtype, **extra_weight_attrs):
int8_dtype = torch.int8
assert 'weight_loader' in extra_weight_attrs
weight_loader = extra_weight_attrs['weight_loader']
wrapped_weight_loader = ExpertsInt8MoEMethod.quantizing_weight_loader(
layer, weight_loader)
extra_weight_attrs['weight_loader'] = wrapped_weight_loader
# Fused gate_up_proj (column parallel)
w13_weight = torch.nn.Parameter(torch.empty(num_experts,
2 * intermediate_size,
hidden_size,
dtype=int8_dtype),
requires_grad=False)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
# down_proj (row parallel)
w2_weight = torch.nn.Parameter(torch.empty(num_experts,
hidden_size,
intermediate_size,
dtype=int8_dtype),
requires_grad=False)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
w13_scale = torch.nn.Parameter(torch.zeros(num_experts,
2 * intermediate_size,
dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w13_scale", w13_scale)
w2_scale = torch.nn.Parameter(torch.zeros(num_experts,
hidden_size,
dtype=torch.float32),
requires_grad=False)
layer.register_parameter("w2_scale", w2_scale)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool = True,
use_grouped_topk: bool = False,
num_expert_group: Optional[int] = None,
topk_group: Optional[int] = None,
custom_routing_function: Optional[Callable] = None,
) -> torch.Tensor:
from vllm.model_executor.layers.fused_moe import fused_experts
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function)
return fused_experts(x,
layer.w13_weight,
layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
use_int8_w8a16=True,
w1_scale=layer.w13_scale,
w2_scale=layer.w2_scale)
@staticmethod
def quantizing_weight_loader(layer, weight_loader):
def quantize_and_call_weight_loader(param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
weight_name: str, shard_id: int,
expert_id: int):
tp_rank = get_tensor_model_parallel_rank()
shard_size = layer.intermediate_size_per_partition
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
device = get_tp_group().device
loaded_weight = loaded_weight.to(device)
# w1, gate_proj case: Load into first shard of w13.
if shard_id == "w1":
scales = quantize_in_place_and_get_scales(
loaded_weight[shard, :])
layer.w13_scale.data[expert_id, 0:shard_size].copy_(scales[:,
0])
# w3, up_proj case: Load into second shard of w13.
elif shard_id == "w3":
scales = quantize_in_place_and_get_scales(
loaded_weight[shard, :])
layer.w13_scale.data[expert_id, shard_size:2 *
shard_size].copy_(scales[:, 0])
# w2, down_proj case: Load into only shard of w2.
elif shard_id == "w2":
scales = quantize_in_place_and_get_scales(loaded_weight[:,
shard])
layer.w2_scale.data[expert_id, :].copy_(scales[:, 0])
else:
raise ValueError(
f"Shard id must be in [0,1,2] but got {shard_id}")
weight_loader(param, loaded_weight, weight_name, shard_id,
expert_id)
return quantize_and_call_weight_loader
def quantize_in_place_and_get_scales(weight: torch.Tensor) -> torch.Tensor:
vmax = torch.iinfo(torch.int8).max
scales = (torch.max(torch.abs(weight), dim=1, keepdim=True)[0] / vmax)
weight.div_(scales)
weight.round_()
weight.clamp_(-vmax, vmax)
return scales