mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-20 17:15:01 +08:00
Co-authored-by: Your Name <you@example.com> Co-authored-by: Zeqi Lin <zelin@microsoft.com> Co-authored-by: Zeqi Lin <Zeqi.Lin@microsoft.com>
180 lines
7.2 KiB
Python
180 lines
7.2 KiB
Python
from typing import Any, Callable, Dict, List, Optional
|
|
|
|
import torch
|
|
|
|
from vllm.distributed import get_tensor_model_parallel_rank, get_tp_group
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE, FusedMoEMethodBase
|
|
from vllm.model_executor.layers.linear import (LinearBase,
|
|
UnquantizedLinearMethod)
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig, QuantizeMethodBase)
|
|
from vllm.model_executor.utils import set_weight_attrs
|
|
|
|
|
|
class ExpertsInt8Config(QuantizationConfig):
|
|
"""Config class for Int8 experts quantization."""
|
|
|
|
def __init__(self) -> None:
|
|
pass
|
|
|
|
@classmethod
|
|
def get_name(cls) -> str:
|
|
return "experts_int8"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> List[torch.dtype]:
|
|
return [torch.bfloat16, torch.half]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 80
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> List[str]:
|
|
return []
|
|
|
|
@classmethod
|
|
def from_config(cls, config: Dict[str, Any]) -> "ExpertsInt8Config":
|
|
return cls()
|
|
|
|
def get_quant_method(self, layer: torch.nn.Module,
|
|
prefix: str) -> Optional["QuantizeMethodBase"]:
|
|
if isinstance(layer, LinearBase):
|
|
return UnquantizedLinearMethod()
|
|
elif isinstance(layer, FusedMoE):
|
|
return ExpertsInt8MoEMethod(self)
|
|
return None
|
|
|
|
def get_scaled_act_names(self) -> List[str]:
|
|
return []
|
|
|
|
|
|
class ExpertsInt8MoEMethod(FusedMoEMethodBase):
|
|
|
|
def __init__(self, quant_config: ExpertsInt8Config):
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(self, layer: torch.nn.Module, num_experts: int,
|
|
hidden_size: int, intermediate_size: int,
|
|
params_dtype: torch.dtype, **extra_weight_attrs):
|
|
|
|
int8_dtype = torch.int8
|
|
|
|
assert 'weight_loader' in extra_weight_attrs
|
|
weight_loader = extra_weight_attrs['weight_loader']
|
|
wrapped_weight_loader = ExpertsInt8MoEMethod.quantizing_weight_loader(
|
|
layer, weight_loader)
|
|
extra_weight_attrs['weight_loader'] = wrapped_weight_loader
|
|
|
|
# Fused gate_up_proj (column parallel)
|
|
w13_weight = torch.nn.Parameter(torch.empty(num_experts,
|
|
2 * intermediate_size,
|
|
hidden_size,
|
|
dtype=int8_dtype),
|
|
requires_grad=False)
|
|
layer.register_parameter("w13_weight", w13_weight)
|
|
set_weight_attrs(w13_weight, extra_weight_attrs)
|
|
|
|
# down_proj (row parallel)
|
|
w2_weight = torch.nn.Parameter(torch.empty(num_experts,
|
|
hidden_size,
|
|
intermediate_size,
|
|
dtype=int8_dtype),
|
|
requires_grad=False)
|
|
layer.register_parameter("w2_weight", w2_weight)
|
|
set_weight_attrs(w2_weight, extra_weight_attrs)
|
|
|
|
w13_scale = torch.nn.Parameter(torch.zeros(num_experts,
|
|
2 * intermediate_size,
|
|
dtype=torch.float32),
|
|
requires_grad=False)
|
|
layer.register_parameter("w13_scale", w13_scale)
|
|
|
|
w2_scale = torch.nn.Parameter(torch.zeros(num_experts,
|
|
hidden_size,
|
|
dtype=torch.float32),
|
|
requires_grad=False)
|
|
layer.register_parameter("w2_scale", w2_scale)
|
|
|
|
def apply(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
x: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
top_k: int,
|
|
renormalize: bool = True,
|
|
use_grouped_topk: bool = False,
|
|
num_expert_group: Optional[int] = None,
|
|
topk_group: Optional[int] = None,
|
|
custom_routing_function: Optional[Callable] = None,
|
|
) -> torch.Tensor:
|
|
from vllm.model_executor.layers.fused_moe import fused_experts
|
|
|
|
topk_weights, topk_ids = FusedMoE.select_experts(
|
|
hidden_states=x,
|
|
router_logits=router_logits,
|
|
use_grouped_topk=use_grouped_topk,
|
|
top_k=top_k,
|
|
renormalize=renormalize,
|
|
topk_group=topk_group,
|
|
num_expert_group=num_expert_group,
|
|
custom_routing_function=custom_routing_function)
|
|
|
|
return fused_experts(x,
|
|
layer.w13_weight,
|
|
layer.w2_weight,
|
|
topk_weights=topk_weights,
|
|
topk_ids=topk_ids,
|
|
inplace=True,
|
|
use_int8_w8a16=True,
|
|
w1_scale=layer.w13_scale,
|
|
w2_scale=layer.w2_scale)
|
|
|
|
@staticmethod
|
|
def quantizing_weight_loader(layer, weight_loader):
|
|
|
|
def quantize_and_call_weight_loader(param: torch.nn.Parameter,
|
|
loaded_weight: torch.Tensor,
|
|
weight_name: str, shard_id: int,
|
|
expert_id: int):
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
shard_size = layer.intermediate_size_per_partition
|
|
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
|
|
device = get_tp_group().device
|
|
loaded_weight = loaded_weight.to(device)
|
|
# w1, gate_proj case: Load into first shard of w13.
|
|
if shard_id == "w1":
|
|
scales = quantize_in_place_and_get_scales(
|
|
loaded_weight[shard, :])
|
|
layer.w13_scale.data[expert_id, 0:shard_size].copy_(scales[:,
|
|
0])
|
|
# w3, up_proj case: Load into second shard of w13.
|
|
elif shard_id == "w3":
|
|
scales = quantize_in_place_and_get_scales(
|
|
loaded_weight[shard, :])
|
|
layer.w13_scale.data[expert_id, shard_size:2 *
|
|
shard_size].copy_(scales[:, 0])
|
|
# w2, down_proj case: Load into only shard of w2.
|
|
elif shard_id == "w2":
|
|
scales = quantize_in_place_and_get_scales(loaded_weight[:,
|
|
shard])
|
|
layer.w2_scale.data[expert_id, :].copy_(scales[:, 0])
|
|
else:
|
|
raise ValueError(
|
|
f"Shard id must be in [0,1,2] but got {shard_id}")
|
|
weight_loader(param, loaded_weight, weight_name, shard_id,
|
|
expert_id)
|
|
|
|
return quantize_and_call_weight_loader
|
|
|
|
|
|
def quantize_in_place_and_get_scales(weight: torch.Tensor) -> torch.Tensor:
|
|
vmax = torch.iinfo(torch.int8).max
|
|
scales = (torch.max(torch.abs(weight), dim=1, keepdim=True)[0] / vmax)
|
|
|
|
weight.div_(scales)
|
|
weight.round_()
|
|
weight.clamp_(-vmax, vmax)
|
|
|
|
return scales
|