mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-10 05:55:55 +08:00
Signed-off-by: qqma <qqma@amazon.com> Signed-off-by: DarkLight1337 <tlleungac@connect.ust.hk> Co-authored-by: qqma <qqma@amazon.com> Co-authored-by: Cyrus Leung <tlleungac@connect.ust.hk>
205 lines
6.8 KiB
Python
205 lines
6.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
import contextlib
|
|
import os
|
|
import weakref
|
|
from contextlib import ExitStack
|
|
from dataclasses import dataclass
|
|
from typing import Optional
|
|
|
|
import pytest
|
|
|
|
from tests.utils import wait_for_gpu_memory_to_clear
|
|
from vllm import LLM
|
|
from vllm.config import CompilationConfig
|
|
from vllm.platforms import current_platform
|
|
|
|
|
|
@contextlib.contextmanager
|
|
def temporary_environ(env_vars):
|
|
"""
|
|
Temporarily set environment variables and restore them afterward.
|
|
We have to do this vs monkeypatch because monkeypatch doesn't work
|
|
with "module" scoped fixtures.
|
|
"""
|
|
original_env = {k: os.environ.get(k) for k in env_vars}
|
|
try:
|
|
os.environ.update(env_vars)
|
|
yield
|
|
finally:
|
|
for k, v in original_env.items():
|
|
if v is None:
|
|
os.environ.pop(k, None)
|
|
else:
|
|
os.environ[k] = v
|
|
|
|
|
|
@dataclass
|
|
class BackendConfig:
|
|
name: str
|
|
env_vars: dict
|
|
comp_config: dict
|
|
specific_gpu_arch: Optional[tuple] = None
|
|
|
|
|
|
# Define all backend configurations of full cudagraph to be tested
|
|
backend_configs = {
|
|
# FA3 on Hopper
|
|
"FA3":
|
|
BackendConfig(name="FA3",
|
|
env_vars={
|
|
"VLLM_FLASH_ATTN_VERSION": "3",
|
|
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
|
|
},
|
|
comp_config={
|
|
"cudagraph_mode": "FULL",
|
|
},
|
|
specific_gpu_arch=(9, 0)),
|
|
# FlashMLA on Hopper
|
|
"FlashMLA":
|
|
BackendConfig(name="FlashMLA",
|
|
env_vars={
|
|
"VLLM_ATTENTION_BACKEND": "FLASHMLA",
|
|
},
|
|
comp_config={
|
|
"cudagraph_mode": "FULL_AND_PIECEWISE",
|
|
},
|
|
specific_gpu_arch=(9, 0)),
|
|
# FlashAttention MLA on Hopper
|
|
"FlashAttentionMLA":
|
|
BackendConfig(name="FlashAttentionMLA",
|
|
env_vars={
|
|
"VLLM_ATTENTION_BACKEND": "FLASH_ATTN_MLA",
|
|
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
|
|
},
|
|
comp_config={
|
|
"cudagraph_mode": "FULL_DECODE_ONLY",
|
|
},
|
|
specific_gpu_arch=(9, 0)),
|
|
# FA2
|
|
"FA2":
|
|
BackendConfig(name="FA2",
|
|
env_vars={
|
|
"VLLM_FLASH_ATTN_VERSION": "2",
|
|
"VLLM_FLASH_ATTN_MAX_NUM_SPLITS_FOR_CUDA_GRAPH": "16",
|
|
},
|
|
comp_config={
|
|
"cudagraph_mode": "FULL_AND_PIECEWISE",
|
|
}),
|
|
# Triton Attention
|
|
"TritonAttn":
|
|
BackendConfig(name="TritonAttn",
|
|
env_vars={"VLLM_ATTENTION_BACKEND": "TRITON_ATTN_VLLM_V1"},
|
|
comp_config={
|
|
"cudagraph_mode": "FULL_AND_PIECEWISE",
|
|
}),
|
|
# FlashInfer
|
|
"FlashInfer":
|
|
BackendConfig(name="FlashInfer",
|
|
env_vars={"VLLM_ATTENTION_BACKEND": "FLASHINFER"},
|
|
comp_config={
|
|
"cudagraph_mode": "FULL_AND_PIECEWISE",
|
|
}),
|
|
}
|
|
|
|
# test attention backend and cudagraph_mode combo
|
|
# (backend_name, cudagraph_mode, supported)
|
|
combo_cases_1 = [
|
|
("FA3", "FULL", True),
|
|
("FA3", "FULL_AND_PIECEWISE", True),
|
|
("FA2", "FULL", True), # Should fallback to FULL_AND_PIECEWISE
|
|
("FA2", "FULL_AND_PIECEWISE", True),
|
|
("FlashInfer", "FULL", True), # Should fallback to FULL_AND_PIECEWISE
|
|
("FlashInfer", "FULL_AND_PIECEWISE", True),
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("combo_case", combo_cases_1)
|
|
def test_backend_and_cudagraph_mode_combo(combo_case):
|
|
backend_name, cudagraph_mode, supported = combo_case
|
|
if backend_name == "FlashInfer":
|
|
try:
|
|
import flashinfer # noqa: F401
|
|
except ImportError:
|
|
pytest.skip("FlashInfer is not installed")
|
|
backend_config = backend_configs[backend_name]
|
|
# Dynamically skip test if GPU capability is not met
|
|
if backend_config.specific_gpu_arch and backend_config.specific_gpu_arch\
|
|
!= current_platform.get_device_capability():
|
|
pytest.skip("Only Hopper GPUs support FA3 and FlashMLA")
|
|
|
|
env_vars = {"VLLM_USE_V1": "1", **backend_configs[backend_name].env_vars}
|
|
|
|
with temporary_environ(env_vars), ExitStack() as stack:
|
|
if not supported:
|
|
stack.enter_context(pytest.raises(Exception))
|
|
|
|
llm = LLM(model="Qwen/Qwen2-1.5B-Instruct",
|
|
max_num_seqs=256,
|
|
trust_remote_code=True,
|
|
gpu_memory_utilization=0.45,
|
|
max_model_len=1024,
|
|
compilation_config=CompilationConfig(
|
|
level=3, cudagraph_mode=cudagraph_mode))
|
|
llm.generate(["Hello, my name is"] * 10)
|
|
|
|
try:
|
|
llm = weakref.proxy(llm)
|
|
del llm
|
|
except UnboundLocalError:
|
|
pass
|
|
|
|
wait_for_gpu_memory_to_clear(
|
|
devices=[0],
|
|
threshold_ratio=0.1,
|
|
)
|
|
|
|
|
|
# test cudagraph_mode with different compilation level.
|
|
# (backend_name, cudagraph_mode, compilation_level, supported)
|
|
combo_cases_2 = [
|
|
("FA2", "FULL", 0, True), # no compilation + full cudagraph
|
|
("FA2", "FULL", 3, True), # piecewise compilation + full cudagraph
|
|
("FA2", "PIECEWISE", 0, False), # no compilation + piecewise cudagraph
|
|
("FA2", "PIECEWISE", 3,
|
|
True), # piecewise compilation + piecewise cudagraph
|
|
("FA2", "FULL_AND_PIECEWISE", 0,
|
|
False), # piecewise cudagraph not supported without piecewise compilation
|
|
("FA2", "FULL_AND_PIECEWISE", 3, True),
|
|
("FA2", "FULL_DECODE_ONLY", 0, True),
|
|
("FA2", "FULL_DECODE_ONLY", 3, True),
|
|
("FA2", "NONE", 0, True), # no compilation + no cudagraph
|
|
("FA2", "NONE", 3, True), # piecewise compilation + no cudagraph
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize("combo_case", combo_cases_2)
|
|
def test_cudagraph_compilation_combo(combo_case):
|
|
backend_name, cudagraph_mode, compilation_level, supported\
|
|
= combo_case
|
|
|
|
env_vars = {"VLLM_USE_V1": "1", **backend_configs[backend_name].env_vars}
|
|
|
|
with temporary_environ(env_vars), ExitStack() as stack:
|
|
if not supported:
|
|
stack.enter_context(pytest.raises(Exception))
|
|
|
|
llm = LLM(model="Qwen/Qwen2-1.5B-Instruct",
|
|
max_num_seqs=256,
|
|
trust_remote_code=True,
|
|
gpu_memory_utilization=0.45,
|
|
max_model_len=1024,
|
|
compilation_config=CompilationConfig(
|
|
level=compilation_level, cudagraph_mode=cudagraph_mode))
|
|
llm.generate(["Hello, my name is"] * 10)
|
|
try:
|
|
llm = weakref.proxy(llm)
|
|
del llm
|
|
except UnboundLocalError:
|
|
pass
|
|
finally:
|
|
wait_for_gpu_memory_to_clear(
|
|
devices=[0],
|
|
threshold_ratio=0.1,
|
|
)
|