bnellnm 00e5cbb967
[MoE][Refactor] Remove most arguments to FusedMoEMethodBase.apply (#29066)
Signed-off-by: Bill Nell <bnell@redhat.com>
Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com>
Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
2025-12-09 13:48:25 -08:00

208 lines
6.8 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
from typing import Any, Optional
import torch
from vllm.distributed import get_tensor_model_parallel_rank, get_tp_group
from vllm.model_executor.layers.fused_moe import (
FusedMoE,
FusedMoEConfig,
FusedMoEMethodBase,
)
from vllm.model_executor.layers.fused_moe.config import (
FusedMoEQuantConfig,
int8_w8a16_moe_quant_config,
)
from vllm.model_executor.layers.linear import LinearBase, UnquantizedLinearMethod
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig,
QuantizeMethodBase,
)
from vllm.model_executor.utils import set_weight_attrs
class ExpertsInt8Config(QuantizationConfig):
"""Config class for Int8 experts quantization."""
def __init__(self) -> None:
super().__init__()
@classmethod
def get_name(cls) -> QuantizationMethods:
return "experts_int8"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.bfloat16, torch.half]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> list[str]:
return []
@classmethod
def from_config(cls, config: dict[str, Any]) -> "ExpertsInt8Config":
return cls()
def get_quant_method(
self, layer: torch.nn.Module, prefix: str
) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, LinearBase):
return UnquantizedLinearMethod()
elif isinstance(layer, FusedMoE):
return ExpertsInt8MoEMethod(self, layer.moe_config)
return None
class ExpertsInt8MoEMethod(FusedMoEMethodBase):
def __init__(
self,
quant_config: ExpertsInt8Config,
moe: FusedMoEConfig,
):
super().__init__(moe)
self.quant_config = quant_config
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
int8_dtype = torch.int8
assert "weight_loader" in extra_weight_attrs
weight_loader = extra_weight_attrs["weight_loader"]
wrapped_weight_loader = ExpertsInt8MoEMethod.quantizing_weight_loader(
layer, weight_loader
)
extra_weight_attrs["weight_loader"] = wrapped_weight_loader
# Fused gate_up_proj (column parallel)
w13_weight = torch.nn.Parameter(
torch.empty(
num_experts,
2 * intermediate_size_per_partition,
hidden_size,
dtype=int8_dtype,
),
requires_grad=False,
)
layer.register_parameter("w13_weight", w13_weight)
set_weight_attrs(w13_weight, extra_weight_attrs)
# down_proj (row parallel)
w2_weight = torch.nn.Parameter(
torch.empty(
num_experts,
hidden_size,
intermediate_size_per_partition,
dtype=int8_dtype,
),
requires_grad=False,
)
layer.register_parameter("w2_weight", w2_weight)
set_weight_attrs(w2_weight, extra_weight_attrs)
w13_scale = torch.nn.Parameter(
torch.zeros(
num_experts, 2 * intermediate_size_per_partition, dtype=torch.float32
),
requires_grad=False,
)
layer.register_parameter("w13_scale", w13_scale)
w2_scale = torch.nn.Parameter(
torch.zeros(num_experts, hidden_size, dtype=torch.float32),
requires_grad=False,
)
layer.register_parameter("w2_scale", w2_scale)
def get_fused_moe_quant_config(
self, layer: torch.nn.Module
) -> FusedMoEQuantConfig | None:
return int8_w8a16_moe_quant_config(
w1_scale=layer.w13_scale, w2_scale=layer.w2_scale, w1_zp=None, w2_zp=None
)
def apply(
self,
layer: FusedMoE,
x: torch.Tensor,
router_logits: torch.Tensor,
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
from vllm.model_executor.layers.fused_moe import fused_experts
topk_weights, topk_ids, _ = layer.select_experts(
hidden_states=x,
router_logits=router_logits,
)
return fused_experts(
x,
layer.w13_weight,
layer.w2_weight,
topk_weights=topk_weights,
topk_ids=topk_ids,
inplace=True,
activation=layer.activation,
apply_router_weight_on_input=layer.apply_router_weight_on_input,
global_num_experts=layer.global_num_experts,
expert_map=layer.expert_map,
quant_config=self.moe_quant_config,
)
@staticmethod
def quantizing_weight_loader(layer, weight_loader):
def quantize_and_call_weight_loader(
param: torch.nn.Parameter,
loaded_weight: torch.Tensor,
weight_name: str,
shard_id: int,
expert_id: int,
):
tp_rank = get_tensor_model_parallel_rank()
shard_size = layer.intermediate_size_per_partition
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
device = get_tp_group().device
loaded_weight = loaded_weight.to(device)
# w1, gate_proj case: Load into first shard of w13.
if shard_id == "w1":
scales = quantize_in_place_and_get_scales(loaded_weight[shard, :])
layer.w13_scale.data[expert_id, 0:shard_size].copy_(scales[:, 0])
# w3, up_proj case: Load into second shard of w13.
elif shard_id == "w3":
scales = quantize_in_place_and_get_scales(loaded_weight[shard, :])
layer.w13_scale.data[expert_id, shard_size : 2 * shard_size].copy_(
scales[:, 0]
)
# w2, down_proj case: Load into only shard of w2.
elif shard_id == "w2":
scales = quantize_in_place_and_get_scales(loaded_weight[:, shard])
layer.w2_scale.data[expert_id, :].copy_(scales[:, 0])
else:
raise ValueError(f"Shard id must be in [0,1,2] but got {shard_id}")
weight_loader(param, loaded_weight, weight_name, shard_id, expert_id)
return quantize_and_call_weight_loader
def quantize_in_place_and_get_scales(weight: torch.Tensor) -> torch.Tensor:
vmax = torch.iinfo(torch.int8).max
scales = torch.max(torch.abs(weight), dim=1, keepdim=True)[0] / vmax
weight.div_(scales)
weight.round_()
weight.clamp_(-vmax, vmax)
return scales