mirror of
https://git.datalinker.icu/vllm-project/vllm.git
synced 2025-12-23 01:35:01 +08:00
Signed-off-by: Bill Nell <bnell@redhat.com> Signed-off-by: Tyler Michael Smith <tlrmchlsmth@gmail.com> Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com> Co-authored-by: Lucas Wilkinson <LucasWilkinson@users.noreply.github.com> Co-authored-by: Tyler Michael Smith <tlrmchlsmth@gmail.com>
208 lines
6.8 KiB
Python
208 lines
6.8 KiB
Python
# SPDX-License-Identifier: Apache-2.0
|
|
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
|
|
|
|
from typing import Any, Optional
|
|
|
|
import torch
|
|
|
|
from vllm.distributed import get_tensor_model_parallel_rank, get_tp_group
|
|
from vllm.model_executor.layers.fused_moe import (
|
|
FusedMoE,
|
|
FusedMoEConfig,
|
|
FusedMoEMethodBase,
|
|
)
|
|
from vllm.model_executor.layers.fused_moe.config import (
|
|
FusedMoEQuantConfig,
|
|
int8_w8a16_moe_quant_config,
|
|
)
|
|
from vllm.model_executor.layers.linear import LinearBase, UnquantizedLinearMethod
|
|
from vllm.model_executor.layers.quantization import QuantizationMethods
|
|
from vllm.model_executor.layers.quantization.base_config import (
|
|
QuantizationConfig,
|
|
QuantizeMethodBase,
|
|
)
|
|
from vllm.model_executor.utils import set_weight_attrs
|
|
|
|
|
|
class ExpertsInt8Config(QuantizationConfig):
|
|
"""Config class for Int8 experts quantization."""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
@classmethod
|
|
def get_name(cls) -> QuantizationMethods:
|
|
return "experts_int8"
|
|
|
|
@classmethod
|
|
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
|
|
return [torch.bfloat16, torch.half]
|
|
|
|
@classmethod
|
|
def get_min_capability(cls) -> int:
|
|
return 80
|
|
|
|
@classmethod
|
|
def get_config_filenames(cls) -> list[str]:
|
|
return []
|
|
|
|
@classmethod
|
|
def from_config(cls, config: dict[str, Any]) -> "ExpertsInt8Config":
|
|
return cls()
|
|
|
|
def get_quant_method(
|
|
self, layer: torch.nn.Module, prefix: str
|
|
) -> Optional["QuantizeMethodBase"]:
|
|
if isinstance(layer, LinearBase):
|
|
return UnquantizedLinearMethod()
|
|
elif isinstance(layer, FusedMoE):
|
|
return ExpertsInt8MoEMethod(self, layer.moe_config)
|
|
return None
|
|
|
|
|
|
class ExpertsInt8MoEMethod(FusedMoEMethodBase):
|
|
def __init__(
|
|
self,
|
|
quant_config: ExpertsInt8Config,
|
|
moe: FusedMoEConfig,
|
|
):
|
|
super().__init__(moe)
|
|
self.quant_config = quant_config
|
|
|
|
def create_weights(
|
|
self,
|
|
layer: torch.nn.Module,
|
|
num_experts: int,
|
|
hidden_size: int,
|
|
intermediate_size_per_partition: int,
|
|
params_dtype: torch.dtype,
|
|
**extra_weight_attrs,
|
|
):
|
|
int8_dtype = torch.int8
|
|
|
|
assert "weight_loader" in extra_weight_attrs
|
|
weight_loader = extra_weight_attrs["weight_loader"]
|
|
wrapped_weight_loader = ExpertsInt8MoEMethod.quantizing_weight_loader(
|
|
layer, weight_loader
|
|
)
|
|
extra_weight_attrs["weight_loader"] = wrapped_weight_loader
|
|
|
|
# Fused gate_up_proj (column parallel)
|
|
w13_weight = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts,
|
|
2 * intermediate_size_per_partition,
|
|
hidden_size,
|
|
dtype=int8_dtype,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_weight", w13_weight)
|
|
set_weight_attrs(w13_weight, extra_weight_attrs)
|
|
|
|
# down_proj (row parallel)
|
|
w2_weight = torch.nn.Parameter(
|
|
torch.empty(
|
|
num_experts,
|
|
hidden_size,
|
|
intermediate_size_per_partition,
|
|
dtype=int8_dtype,
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w2_weight", w2_weight)
|
|
set_weight_attrs(w2_weight, extra_weight_attrs)
|
|
|
|
w13_scale = torch.nn.Parameter(
|
|
torch.zeros(
|
|
num_experts, 2 * intermediate_size_per_partition, dtype=torch.float32
|
|
),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w13_scale", w13_scale)
|
|
|
|
w2_scale = torch.nn.Parameter(
|
|
torch.zeros(num_experts, hidden_size, dtype=torch.float32),
|
|
requires_grad=False,
|
|
)
|
|
layer.register_parameter("w2_scale", w2_scale)
|
|
|
|
def get_fused_moe_quant_config(
|
|
self, layer: torch.nn.Module
|
|
) -> FusedMoEQuantConfig | None:
|
|
return int8_w8a16_moe_quant_config(
|
|
w1_scale=layer.w13_scale, w2_scale=layer.w2_scale, w1_zp=None, w2_zp=None
|
|
)
|
|
|
|
def apply(
|
|
self,
|
|
layer: FusedMoE,
|
|
x: torch.Tensor,
|
|
router_logits: torch.Tensor,
|
|
) -> torch.Tensor | tuple[torch.Tensor, torch.Tensor]:
|
|
from vllm.model_executor.layers.fused_moe import fused_experts
|
|
|
|
topk_weights, topk_ids, _ = layer.select_experts(
|
|
hidden_states=x,
|
|
router_logits=router_logits,
|
|
)
|
|
|
|
return fused_experts(
|
|
x,
|
|
layer.w13_weight,
|
|
layer.w2_weight,
|
|
topk_weights=topk_weights,
|
|
topk_ids=topk_ids,
|
|
inplace=True,
|
|
activation=layer.activation,
|
|
apply_router_weight_on_input=layer.apply_router_weight_on_input,
|
|
global_num_experts=layer.global_num_experts,
|
|
expert_map=layer.expert_map,
|
|
quant_config=self.moe_quant_config,
|
|
)
|
|
|
|
@staticmethod
|
|
def quantizing_weight_loader(layer, weight_loader):
|
|
def quantize_and_call_weight_loader(
|
|
param: torch.nn.Parameter,
|
|
loaded_weight: torch.Tensor,
|
|
weight_name: str,
|
|
shard_id: int,
|
|
expert_id: int,
|
|
):
|
|
tp_rank = get_tensor_model_parallel_rank()
|
|
shard_size = layer.intermediate_size_per_partition
|
|
shard = slice(tp_rank * shard_size, (tp_rank + 1) * shard_size)
|
|
device = get_tp_group().device
|
|
loaded_weight = loaded_weight.to(device)
|
|
# w1, gate_proj case: Load into first shard of w13.
|
|
if shard_id == "w1":
|
|
scales = quantize_in_place_and_get_scales(loaded_weight[shard, :])
|
|
layer.w13_scale.data[expert_id, 0:shard_size].copy_(scales[:, 0])
|
|
# w3, up_proj case: Load into second shard of w13.
|
|
elif shard_id == "w3":
|
|
scales = quantize_in_place_and_get_scales(loaded_weight[shard, :])
|
|
layer.w13_scale.data[expert_id, shard_size : 2 * shard_size].copy_(
|
|
scales[:, 0]
|
|
)
|
|
# w2, down_proj case: Load into only shard of w2.
|
|
elif shard_id == "w2":
|
|
scales = quantize_in_place_and_get_scales(loaded_weight[:, shard])
|
|
layer.w2_scale.data[expert_id, :].copy_(scales[:, 0])
|
|
else:
|
|
raise ValueError(f"Shard id must be in [0,1,2] but got {shard_id}")
|
|
weight_loader(param, loaded_weight, weight_name, shard_id, expert_id)
|
|
|
|
return quantize_and_call_weight_loader
|
|
|
|
|
|
def quantize_in_place_and_get_scales(weight: torch.Tensor) -> torch.Tensor:
|
|
vmax = torch.iinfo(torch.int8).max
|
|
scales = torch.max(torch.abs(weight), dim=1, keepdim=True)[0] / vmax
|
|
|
|
weight.div_(scales)
|
|
weight.round_()
|
|
weight.clamp_(-vmax, vmax)
|
|
|
|
return scales
|