vllm/tests/v1/e2e/test_lora_with_spec_decode.py
Xiaohong (Sean) Chen d0c7792004
[Bugfix][LoRA][Spec Decode] Support LoRA with speculative decoding (#21068)
Signed-off-by: Sean Chen <xiaohong_chen1991@hotmail.com>
Signed-off-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Robert Shaw <114415538+robertgshaw2-redhat@users.noreply.github.com>
Co-authored-by: Danielle Robinson <dcmaddix@gmail.com>
Co-authored-by: Haipeng Li <li2haipeng@gmail.com>
Co-authored-by: li2haipeng <44383182+li2haipeng@users.noreply.github.com>
2025-11-08 01:58:22 +00:00

142 lines
4.2 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
"""
This script contains:
1. test lora with speculative decoding for batch inference
"""
import random
import numpy as np
import pytest
import torch
from vllm import LLM, SamplingParams
from vllm.distributed import cleanup_dist_env_and_memory
from vllm.lora.request import LoRARequest
from vllm.platforms import current_platform
LORA_TEST_PROMPT_MAP: dict[str, str] = {}
LORA_TEST_PROMPT_MAP["premjatin/qwen-linear-algebra-coder"] = """
### INSTRUCTION:
You are an AI assistant that generates Python code to solve linear
algebra problems.
### PROBLEM:
Find the eigenvalues and eigenvectors of the following 3x3 matrix:
[[3, 2, 0],
[2, 3, 0],
[0, 0, 2]]
### OUTPUT FORMAT (STRICT):
Numbers should be represented as integers only.
### PYTHON SOLUTION:
"""
SEED = 42
@pytest.mark.skipif(not current_platform.is_cuda(), reason="CUDA not available")
@pytest.mark.parametrize(
"model_setup",
[
(
"eagle3",
"Qwen/Qwen3-1.7B",
"AngelSlim/Qwen3-1.7B_eagle3",
"premjatin/qwen-linear-algebra-coder",
1,
)
],
)
def test_batch_inference_correctness(
monkeypatch: pytest.MonkeyPatch,
model_setup: tuple[str, str, str, str, int],
):
"""
Compare the outputs of a LLM with only Lora and a LLM with both SD and Lora.
Should be the same and no failure when doing batch inference.
model_setup: (method, model_name, spec_model_name, lora_path, tp_size)
"""
with monkeypatch.context() as m:
m.setenv("VLLM_USE_V1", "1")
# Disable randomness
m.setenv("CUBLAS_WORKSPACE_CONFIG", ":4096:8")
torch.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
torch.cuda.manual_seed_all(SEED)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
method, model_name, spec_model_name, lora_path, tp_size = model_setup
# without speculative decoding
ref_llm = LLM(
model=model_name,
trust_remote_code=True,
tensor_parallel_size=tp_size,
max_model_len=2048,
max_num_seqs=4,
enable_lora=True,
max_loras=1,
max_cpu_loras=1,
max_lora_rank=16,
)
prompts = [LORA_TEST_PROMPT_MAP[lora_path]] * 100
lora_request = LoRARequest("adapter", 1, lora_path)
sampling_params = SamplingParams(
temperature=0.0, top_p=1.0, top_k=-1, seed=SEED, max_tokens=128
)
ref_outputs = ref_llm.generate(
prompts, sampling_params, lora_request=lora_request
)
del ref_llm
torch.cuda.empty_cache()
cleanup_dist_env_and_memory()
lora_spec_llm = LLM(
model=model_name,
trust_remote_code=True,
tensor_parallel_size=tp_size,
speculative_config={
"method": method,
"model": spec_model_name,
"num_speculative_tokens": 3,
"max_model_len": 2048,
},
max_model_len=2048,
max_num_seqs=4,
enable_lora=True,
max_loras=1,
max_cpu_loras=1,
max_lora_rank=16,
)
lora_spec_outputs = lora_spec_llm.generate(
prompts, sampling_params, lora_request=lora_request
)
matches = 0
misses = 0
for ref_output, spec_output in zip(ref_outputs, lora_spec_outputs):
if ref_output.outputs[0].text == spec_output.outputs[0].text:
matches += 1
else:
misses += 1
print(f"ref_output: {ref_output.outputs[0].text}")
print(f"spec_output: {spec_output.outputs[0].text}")
# Heuristic: expect at least 90% of the prompts to match exactly
# Upon failure, inspect the outputs to check for inaccuracy.
print(f"match ratio: {matches}/{len(ref_outputs)}")
assert matches > int(0.90 * len(ref_outputs))
del lora_spec_llm
torch.cuda.empty_cache()
cleanup_dist_env_and_memory()