vllm/vllm/model_executor/models/nano_nemotron_vl.py
Harry Mellor 97d1c99302
Rename clashing method names for vLLM model protocol (#27583)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-11-12 19:14:33 -08:00

1741 lines
63 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
# --------------------------------------------------------
# Adapted from
# https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/internvl.py
# under Apache-2.0 License
# LICENSE is in root directory.
# --------------------------------------------------------
import copy
import warnings
from abc import ABC, abstractmethod
from collections.abc import Iterable, Mapping, Sequence
from typing import Annotated, Any, Literal, TypeAlias, TypeVar
import numpy.typing as npt
import regex as re
import torch
import torch.nn as nn
import torchvision.transforms as T
from PIL import Image
from transformers import BatchFeature, PretrainedConfig, TensorType
from vllm.config import VllmConfig
from vllm.config.multimodal import BaseDummyOptions, VideoDummyOptions
from vllm.model_executor.layers.activation import ReLUSquaredActivation
from vllm.model_executor.layers.layernorm import RMSNorm
from vllm.model_executor.model_loader.weight_utils import default_weight_loader
from vllm.model_executor.models.interfaces import (
HasInnerState,
IsHybrid,
MultiModalEmbeddings,
SupportsMultiModal,
SupportsMultiModalPruning,
)
from vllm.model_executor.models.internvl import (
calculate_internvl_targets,
get_internvl_target_ratios,
)
from vllm.model_executor.models.module_mapping import MultiModelKeys
from vllm.model_executor.models.nemotron_h import NemotronHForCausalLM
from vllm.model_executor.models.radio import RadioModel
from vllm.model_executor.models.utils import (
init_vllm_registered_model,
maybe_prefix,
)
from vllm.multimodal import MULTIMODAL_REGISTRY
from vllm.multimodal.evs import (
compute_retained_tokens_count,
compute_retention_mask,
)
from vllm.multimodal.inputs import (
MultiModalDataDict,
MultiModalFieldConfig,
MultiModalKwargs,
MultiModalKwargsItems,
VideoItem,
)
from vllm.multimodal.parse import (
ImageEmbeddingItems,
ImageProcessorItems,
ImageSize,
MultiModalDataItems,
MultiModalDataParser,
)
from vllm.multimodal.processing import (
BaseMultiModalProcessor,
BaseProcessingInfo,
PromptReplacement,
PromptUpdate,
PromptUpdateDetails,
_seq2tokens,
)
from vllm.multimodal.profiling import BaseDummyInputsBuilder
from vllm.sequence import IntermediateTensors
from vllm.transformers_utils.configs.radio import RadioConfig
from vllm.transformers_utils.tokenizer import (
AnyTokenizer,
cached_tokenizer_from_config,
encode_tokens,
)
from vllm.utils.tensor_schema import TensorSchema, TensorShape
from .utils import _merge_multimodal_embeddings
# Configure PIL to handle large images without warnings
# This prevents DecompressionBombWarning for legitimate large images
Image.MAX_IMAGE_PIXELS = None # Disable the limit entirely
# Alternative: Set a specific higher limit
# Image.MAX_IMAGE_PIXELS = 300000000 # ~300M pixels
IMG_START = "<img>"
IMG_END = "</img>"
IMG_CONTEXT = "<image>"
# Profiling
# MAX_FRAMES = 16
DEFAULT_NUM_TILES = 12
class NanoNemotronVLImagePixelInputs(TensorSchema):
"""
Dimensions:
- bn: Batch size * number of images
- bnp: Batch size * number of images * (1 + num_patches)
- c: Number of channels (3)
- h: Height of each image patch
- w: Width of each image patch
"""
type: Literal["pixel_values"]
pixel_values_flat: Annotated[torch.Tensor, TensorShape("bnp", 3, "h", "w")]
num_patches: Annotated[torch.Tensor, TensorShape("bn")]
class NanoNemotronVLImageEmbeddingInputs(TensorSchema):
"""
Dimensions:
- n: Number of images
- f: Total image feature size
- h: Hidden size (must match the hidden size of language model backbone)
"""
type: Literal["image_embeds"]
data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("n", "f", "h")]
NanoNemotronVLImageInputs: TypeAlias = (
NanoNemotronVLImagePixelInputs | NanoNemotronVLImageEmbeddingInputs
)
class NanoNemotronVLVideoPixelInputs(TensorSchema):
"""
Dimensions:
- bvf: Batch size * number of videos * num_frames
- bn: Batch size * number of videos
- f: Number of frames
- c: Number of channels (3)
- h: Height of each video frame
- w: Width of each video frame
"""
type: Literal["pixel_values_videos"]
pixel_values_flat: Annotated[torch.Tensor, TensorShape("bvf", 3, "h", "w")]
num_patches: Annotated[torch.Tensor, TensorShape("bn")]
frames_indices: Annotated[torch.Tensor, TensorShape("bvf")]
frame_duration_ms: Annotated[torch.Tensor, TensorShape("bn")]
class NanoNemotronVLVideoEmbeddingInputs(TensorSchema):
"""
Dimensions:
- n: Number of videos
- f: Total video feature size
- h: Hidden size (must match the hidden size of language model backbone)
"""
type: Literal["video_embeds"]
data: Annotated[torch.Tensor | list[torch.Tensor], TensorShape("n", "f", "h")]
NanoNemotronVLVideoInputs: TypeAlias = (
NanoNemotronVLVideoPixelInputs | NanoNemotronVLVideoEmbeddingInputs
)
def dynamic_preprocess(
image, *, image_size=512, max_num_tiles=12, use_thumbnail=True, idx=0
):
orig_width, orig_height = image.size
target_ratios = get_internvl_target_ratios(1, max_num_tiles)
blocks, target_width, target_height = calculate_internvl_targets(
orig_width=orig_width,
orig_height=orig_height,
target_ratios=target_ratios,
image_size=image_size,
use_thumbnail=False,
)
# resize the image
resized_img = image.resize((target_width, target_height))
processed_images = []
for i in range(blocks):
box = (
(i % (target_width // image_size)) * image_size,
(i // (target_width // image_size)) * image_size,
((i % (target_width // image_size)) + 1) * image_size,
((i // (target_width // image_size)) + 1) * image_size,
)
# split the image
split_img = resized_img.crop(box)
processed_images.append(split_img)
assert len(processed_images) == blocks
if use_thumbnail and len(processed_images) != 1:
thumbnail_img = image.resize((image_size, image_size))
processed_images.append(thumbnail_img)
processed_images = [
img.convert("RGB") if img.mode != "RGB" else img for img in processed_images
]
processed_images = [
T.Resize((image_size, image_size), interpolation=T.InterpolationMode.BICUBIC)(
img
)
for img in processed_images
]
processed_images = [T.ToTensor()(img) for img in processed_images]
return processed_images
def image_to_pixel_values(
image: Image.Image,
*,
input_size: int,
max_num: int,
use_thumbnail: bool,
idx: int,
) -> torch.Tensor:
images = dynamic_preprocess(
image,
image_size=input_size,
max_num_tiles=max_num,
use_thumbnail=use_thumbnail,
idx=idx,
)
pixel_values = torch.stack(images)
return pixel_values
def video_to_pixel_values(
video: npt.NDArray,
*,
input_size: int,
max_num_tiles: int = 1,
use_thumbnail: bool,
) -> torch.Tensor:
assert max_num_tiles == 1, "Video modality always uses one tile"
# Convert each frame to a single resized tile tensor consistent
# with image path
frames_tensors: list[torch.Tensor] = []
for frame in video:
pil_frame = dynamic_preprocess(
Image.fromarray(frame, mode="RGB"),
image_size=input_size,
max_num_tiles=max_num_tiles,
use_thumbnail=use_thumbnail,
idx=0,
)
# dynamic_preprocess returns tensors already; take the single tile
assert len(pil_frame) >= 1
frames_tensors.append(pil_frame[-1])
return torch.stack(frames_tensors)
def input_conditioner(x, norm_mean, norm_std):
return (x - norm_mean) / norm_std
def calculate_timestamps(
indices: list[int] | torch.Tensor,
frame_duration_ms: int,
):
if not isinstance(indices, list):
indices = indices.tolist()
timestamps = [int(i) * frame_duration_ms / 1000.0 for i in indices]
return timestamps
class BaseNanoNemotronVLProcessor(ABC):
"""
This model doesn't define its own HF processor,
so we implement our own one here.
The code to insert image tokens is based on:
https://huggingface.co/OpenGVLab/InternVL2-1B/blob/main/modeling_internvl_chat.py#L252
"""
def __init__(
self,
config: PretrainedConfig,
tokenizer: AnyTokenizer,
*args,
max_num_tiles: int | None = None,
**kwargs,
) -> None:
super().__init__()
self.config = config
self.tokenizer = tokenizer
self.max_num_tiles = max_num_tiles or DEFAULT_NUM_TILES
image_size: int = config.force_image_size
patch_size: int = config.patch_size
self.num_image_token = int(
(image_size // patch_size) ** 2 * (config.downsample_ratio**2)
)
self.image_size = image_size
self.use_thumbnail: bool = config.use_thumbnail
self.norm_mean = torch.Tensor(config.norm_mean).reshape(1, 3, 1, 1)
self.norm_std = torch.Tensor(config.norm_std).reshape(1, 3, 1, 1)
@property
@abstractmethod
def image_token_id(self) -> int:
raise NotImplementedError
@abstractmethod
def get_image_repl(
self,
feature_size: int,
num_patches: int | None,
) -> PromptUpdateDetails[str]:
raise NotImplementedError
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
max_num_tiles: int,
) -> int:
target_ratios = get_internvl_target_ratios(1, max_num_tiles)
num_patches, _, _ = calculate_internvl_targets(
orig_width=image_width,
orig_height=image_height,
target_ratios=target_ratios,
image_size=self.image_size,
use_thumbnail=self.use_thumbnail,
)
return num_patches * self.num_image_token
def _images_to_pixel_values_lst(
self,
images: list[Image.Image],
max_num_tiles: int,
) -> list[torch.Tensor]:
return [
image_to_pixel_values(
image,
input_size=self.image_size,
max_num=max_num_tiles,
use_thumbnail=self.use_thumbnail,
idx=idx,
)
for idx, image in enumerate(images)
]
def _preprocess_image(
self,
text: list[str],
images: list[Image.Image],
max_num_tiles: int,
) -> tuple[list[str], dict[str, torch.Tensor]]:
if len(images) == 0:
image_inputs = {}
else:
pixel_values_lst = self._images_to_pixel_values_lst(images, max_num_tiles)
image_inputs = {
"pixel_values_flat": input_conditioner(
torch.cat(pixel_values_lst), self.norm_mean, self.norm_std
),
"image_num_patches": torch.tensor(
[len(item) for item in pixel_values_lst]
),
}
assert len(text) == 1, (
"hf_processor is called on the output of get_dummy_text, "
"which should be a single string"
)
parts = [x for x in re.split(r"(<image>)", text[0]) if x]
assert parts.count("<image>") == len(pixel_values_lst), (
"the number of <image> tokens in the text should be the "
"same as the number of images"
)
for i, pixel_values in enumerate(pixel_values_lst):
num_patches = pixel_values.shape[0]
feature_size = num_patches * self.num_image_token
image_repl = self.get_image_repl(feature_size, num_patches)
parts[i] = parts[i].replace("<image>", image_repl.full)
text = ["".join(parts)]
return text, image_inputs
def _make_batch_input(self, input_item: Any | list[Any] | None = None):
if input_item is None:
input_item = []
if not isinstance(input_item, list):
input_item = [input_item]
return input_item
def __call__(
self,
text: str | list[str] | None = None,
images: Image.Image | list[Image.Image] | None = None,
return_tensors: str | TensorType | None = None,
max_num_tiles: int | None = None,
) -> BatchFeature:
# Use default if not provided
if max_num_tiles is None:
max_num_tiles = self.max_num_tiles
text, images = [self._make_batch_input(x) for x in (text, images)]
text, image_inputs = self._preprocess_image(
text=text,
images=images,
max_num_tiles=max_num_tiles,
)
text_inputs = self.tokenizer(text, add_special_tokens=False)
combined_outputs = {**text_inputs, **image_inputs}
return BatchFeature(combined_outputs, tensor_type=return_tensors)
class NanoNemotronVLProcessor(BaseNanoNemotronVLProcessor):
"""
HF Processor with extended video processing logic.
Code for video processing is adapted from video example:
https://huggingface.co/OpenGVLab/InternVL3-1B#inference-with-transformers
"""
def __init__(
self,
config: PretrainedConfig,
tokenizer: AnyTokenizer,
*,
max_num_tiles: int | None = None,
min_dynamic_patch: int | None = None,
max_dynamic_patch: int | None = None,
dynamic_image_size: bool | None = None,
video_token: str | None = None,
video_pruning_rate: float | None = None,
) -> None:
super().__init__(
config=config,
tokenizer=tokenizer,
max_num_tiles=max_num_tiles,
min_dynamic_patch=min_dynamic_patch,
max_dynamic_patch=max_dynamic_patch,
dynamic_image_size=dynamic_image_size,
)
# add extra video token for video processing
self.video_token = video_token
self.video_pruning_rate = video_pruning_rate
# Pre-tokenize special tokens for video processing
# to avoid repeated tokenization
self._img_start_token_ids = encode_tokens(
tokenizer, IMG_START, add_special_tokens=False
)
self._img_end_token_ids = encode_tokens(
tokenizer, IMG_END, add_special_tokens=False
)
self._img_context_token_ids = encode_tokens(
tokenizer, IMG_CONTEXT, add_special_tokens=False
)
@property
def supports_video(self) -> bool:
return self.video_token_id is not None
@property
def video_token_id(self) -> int | None:
if self.video_token is None:
return None
return self.tokenizer.get_vocab().get(self.video_token, None)
@property
def image_token_id(self) -> int:
return self.tokenizer.convert_tokens_to_ids(IMG_CONTEXT)
def _videos_to_pixel_values_lst(
self,
videos: list[npt.NDArray],
max_num_tiles: int,
dynamic_image_size: bool | None = None,
) -> list[torch.Tensor]:
return [
video_to_pixel_values(
video,
input_size=self.image_size,
max_num_tiles=max_num_tiles,
use_thumbnail=self.use_thumbnail,
)
for video in videos
]
def _preprocess_video(
self,
text: list[str],
videos: list[tuple[npt.NDArray, dict[str, Any]]],
max_num_tiles: int,
dynamic_image_size: bool | None = None,
):
if len(videos) == 0 or not self.supports_video:
video_inputs = {}
else:
videos_lst = [v[0] for v in videos]
video_metadata_lst = [v[1] for v in videos]
pixel_values_lst_video = self._videos_to_pixel_values_lst(
videos_lst,
max_num_tiles=max_num_tiles,
dynamic_image_size=dynamic_image_size,
)
# We use frame duration in milliseconds (as integer) to ensure
# we have consistent timestamps calculation. At preprocessing
# fps parameter is given in fp32, while at inference it is bf16
# which leads to inaccurate timestamp calculation and causes
# timestamp values to differ.In rare cases this causes
# mismatching number of output tokens for tokenized frame prefixes
frame_duration_ms_lst = [
int(1000.0 / metadata["fps"]) for metadata in video_metadata_lst
]
frames_indices_lst = [
metadata["frames_indices"] for metadata in video_metadata_lst
]
video_inputs = {
"pixel_values_flat_video": input_conditioner(
torch.cat(pixel_values_lst_video), self.norm_mean, self.norm_std
),
"video_num_patches": torch.tensor(
[len(item) for item in pixel_values_lst_video]
),
"frames_indices": frames_indices_lst,
"frame_duration_ms": torch.tensor(frame_duration_ms_lst),
}
image_size: int = self.config.force_image_size
patch_size: int = self.config.patch_size
downsample_ratio = self.config.downsample_ratio
tokens_in_single_frame = int(
(image_size * image_size // patch_size**2) * (downsample_ratio**2)
)
for pixel_values, video_metadata, frames_indices, frame_duration_ms in zip(
pixel_values_lst_video,
video_metadata_lst,
frames_indices_lst,
frame_duration_ms_lst,
):
num_frames = pixel_values.shape[0]
if (
self.video_pruning_rate is not None
and self.video_pruning_rate > 0.0
):
# Start of EVS-specific code
num_tokens = compute_retained_tokens_count(
tokens_per_frame=tokens_in_single_frame,
num_frames=num_frames,
q=self.video_pruning_rate,
)
# Here we just need placeholders that won't actually be replaced -
# we just need to make sure the total number of tokens is correct
# assign all tokens to the first frame
tokens_per_frame = [num_tokens] + [0] * (num_frames - 1)
# End of EVS-specific code
else:
tokens_per_frame = [tokens_in_single_frame] * num_frames
video_repl = self.get_video_repl(
tokens_per_frame=tokens_per_frame,
frames_indices=frames_indices,
frame_duration_ms=frame_duration_ms,
tokenizer=self.tokenizer,
img_start_token_ids=self._img_start_token_ids,
img_end_token_ids=self._img_end_token_ids,
img_context_token_ids=self._img_context_token_ids,
)
# video_repl.full is a list of token IDs
# Convert token IDs back to text for the HF processor flow
video_repl_text = self.tokenizer.decode(
video_repl.full, skip_special_tokens=False
)
text = [t.replace("<video>", video_repl_text, 1) for t in text]
return text, video_inputs
def __call__(
self,
text: str | list[str] | None = None,
images: Image.Image | list[Image.Image] | None = None,
videos: list[tuple[npt.NDArray, dict[str, Any]]] | None = None,
return_tensors: str | TensorType | None = None,
max_num_tiles: int | None = None,
dynamic_image_size: bool | None = None,
) -> BatchFeature:
# Use default if not provided
if max_num_tiles is None:
max_num_tiles = self.max_num_tiles
text, images, videos = [
self._make_batch_input(x) for x in (text, images, videos)
]
text, image_inputs = self._preprocess_image(
text=text,
images=images,
max_num_tiles=max_num_tiles,
)
text, video_inputs = self._preprocess_video(
text=text,
videos=videos,
max_num_tiles=1,
dynamic_image_size=dynamic_image_size,
)
text_inputs = self.tokenizer(text, add_special_tokens=False)
combined_outputs = {**text_inputs, **image_inputs, **video_inputs}
return BatchFeature(combined_outputs, tensor_type=return_tensors)
def get_image_repl(
self,
feature_size: int,
num_patches: int | None,
) -> PromptUpdateDetails[str]:
repl_features = IMG_CONTEXT * feature_size
repl_full = IMG_START + repl_features + IMG_END
return PromptUpdateDetails.select_text(repl_full, IMG_CONTEXT)
@classmethod
def get_video_repl(
cls,
*,
tokens_per_frame: list[int],
frames_indices: list[int],
frame_duration_ms: int,
tokenizer: AnyTokenizer,
img_start_token_ids: list[int],
img_end_token_ids: list[int],
img_context_token_ids: list[int],
) -> PromptUpdateDetails[list[int]]:
"""
Build prompt replacement for a video.
The replacement returned is not actually used to replace the placeholder
tokens - it's just used to make sure we allocate the correct number
of tokens.
Actual replacement is done in embed_multimodal of
NemotronH_Nano_VL_V2
(specifically in _process_video_input -> _create_final_video_embeddings).
There, we create the final embeddings with text embeddings for indicator tokens
and video embeddings for video tokens.
This is a single function that handles all cases - non EVS, EVS dummy, EVS real.
The differentiation is done via tokens_per_frame parameter.
- non EVS case - constant value same value across all frames
- EVS dummy - Doesn't matter how tokens are distributed between frames - just
make sure the total number of tokens is correct.
- EVS real (called from get_real_video_repl_for_evs) - different value per frame
Args:
tokens_per_frame (list[int]): number of tokens per frame
frames_indices (list[int]): frame indices
frame_duration_ms (int): duration of each frame in milliseconds
tokenizer (AnyTokenizer): tokenizer to use for tokenizing frame separators
img_start_token_ids (list[int]): pre-tokenized IMG_START tokens
img_end_token_ids (list[int]): pre-tokenized IMG_END tokens
img_context_token_ids (list[int]): pre-tokenized IMG_CONTEXT tokens
"""
# TODO: Add support of frame_duration_ms to be None
# At preprocessing step we should allow absent / metadata without
# frames_indices field.
timestamps_enabled = frame_duration_ms is not None
if timestamps_enabled:
timestamps = calculate_timestamps(frames_indices, frame_duration_ms)
assert len(timestamps) == len(tokens_per_frame), (
"timestamps and tokens_per_frame must have the same length"
)
frame_separators = [
f"Frame {i + 1} sampled at {timestamp:.2f} seconds: "
for i, timestamp in enumerate(timestamps)
]
else:
frame_separators = [
f"Frame {i + 1}: " for i, _ in enumerate(tokens_per_frame)
]
# Tokenize frame separator independently
frame_separators_tokenized = [
_seq2tokens(tokenizer, sep) for sep in frame_separators
]
# Tokenize each component independently to avoid tokenizer merging tokens
# across boundaries. This ensures consistent tokenization regardless of
# num_tokens_per_frame values.
all_token_ids = []
for i, num_tokens in enumerate(tokens_per_frame):
frame_sep_token_ids = frame_separators_tokenized[i]
all_token_ids.extend(frame_sep_token_ids)
# Add pre-tokenized special tokens
all_token_ids.extend(img_start_token_ids)
all_token_ids.extend(img_context_token_ids * num_tokens)
all_token_ids.extend(img_end_token_ids)
return PromptUpdateDetails.from_seq(all_token_ids)
class BaseNanoNemotronVLProcessingInfo(BaseProcessingInfo):
"""Basic image-only ProcessingInfo for InternVL-style models."""
@abstractmethod
def get_hf_processor(
self,
**kwargs: object,
) -> BaseNanoNemotronVLProcessor:
raise NotImplementedError
def get_supported_mm_limits(self) -> Mapping[str, int | None]:
return {"image": None}
def get_num_image_tokens(
self,
*,
image_width: int,
image_height: int,
max_num_tiles: int,
processor: BaseNanoNemotronVLProcessor | None,
) -> int:
if processor is None:
processor = self.get_hf_processor()
return processor.get_num_image_tokens(
image_width=image_width,
image_height=image_height,
max_num_tiles=max_num_tiles,
)
def get_image_size_with_most_features(self, max_num_tiles: int) -> ImageSize:
processor = self.get_hf_processor()
base_size = processor.image_size
target_ratios = get_internvl_target_ratios(1, max_num_tiles)
largest_feature_size, largest_feature_pinpoint = 0, None
for wr, hr in target_ratios:
width, height = base_size * wr, base_size * hr
feat_size = self.get_num_image_tokens(
image_width=width,
image_height=height,
max_num_tiles=max_num_tiles,
processor=processor,
)
if feat_size > largest_feature_size:
largest_feature_size = feat_size
largest_feature_pinpoint = ImageSize(width=width, height=height)
if largest_feature_size == 0 or largest_feature_pinpoint is None:
raise ValueError("Cannot have a largest feature size of 0!")
return largest_feature_pinpoint
def get_max_image_tokens(self) -> int:
processor = self.get_hf_processor()
# Use default max_num_tiles for max tokens calculation
max_num_tiles = processor.max_num_tiles
target_width, target_height = self.get_image_size_with_most_features(
max_num_tiles
)
return self.get_num_image_tokens(
image_width=target_width,
image_height=target_height,
max_num_tiles=max_num_tiles,
processor=processor,
)
_I = TypeVar("_I", bound=BaseNanoNemotronVLProcessingInfo)
class NanoNemotronVLProcessingInfo(BaseNanoNemotronVLProcessingInfo):
"""ProcessingInfo extended for video processing"""
@property
def supports_video(self):
return self.get_hf_processor().supports_video
def get_supported_mm_limits(self):
video_limit = {"video": None} if self.supports_video else {}
return {**super().get_supported_mm_limits(), **video_limit}
def get_video_token(self) -> str | None:
return IMG_CONTEXT
def get_video_pruning_rate(self) -> float | None:
return self.ctx.get_mm_config().video_pruning_rate
def get_num_frames_with_most_features(
self,
seq_len: int,
mm_counts: Mapping[str, int],
) -> int:
max_images = mm_counts.get("image", 0)
max_videos = mm_counts.get("video", 0)
processor = self.get_hf_processor() # we get the CustomProcessor here
max_image_tokens = self.get_max_image_tokens() * max_images
max_total_frames = (seq_len - max_image_tokens) // processor.num_image_token
max_frames_per_video = max_total_frames // max(max_videos, 1)
return max(max_frames_per_video, 1)
def get_hf_processor(self, **kwargs: object) -> NanoNemotronVLProcessor:
return self.ctx.init_processor(
NanoNemotronVLProcessor,
config=self.get_hf_config(),
tokenizer=self.get_tokenizer(),
video_token=self.get_video_token(),
video_pruning_rate=self.get_video_pruning_rate(),
**kwargs,
)
class NanoNemotronBaseVLMultiModalProcessor(BaseMultiModalProcessor[_I]):
"""Basic image-only MultiModalProcessor for InternVL-style models."""
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
image_num_patches = hf_inputs.get("image_num_patches", torch.empty(0))
return dict(
pixel_values_flat=MultiModalFieldConfig.flat_from_sizes(
"image", image_num_patches
),
image_num_patches=MultiModalFieldConfig.batched("image"),
image_embeds=MultiModalFieldConfig.batched("image"),
)
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargs,
) -> Sequence[PromptUpdate]:
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
if "image_num_patches" in out_mm_kwargs:
image_num_patches = out_mm_kwargs["image_num_patches"]
assert isinstance(image_num_patches, torch.Tensor)
image_num_patches = image_num_patches.tolist()
elif "image_embeds" in out_mm_kwargs:
# to compute num_patches (similar to Qwen2-VL)
image_num_patches = [None] * len(out_mm_kwargs["image_embeds"])
else:
image_num_patches = []
def get_replacement_custom(item_idx: int):
images = mm_items.get_items(
"image", (ImageEmbeddingItems, ImageProcessorItems)
)
if isinstance(images, ImageEmbeddingItems):
feature_size = images.get_feature_size(item_idx)
else:
image_size = images.get_image_size(item_idx)
# Extract max_num_tiles from kwargs, default to 12
max_num_tiles = hf_processor_mm_kwargs.get(
"max_num_tiles", hf_processor.max_num_tiles
)
feature_size = self.info.get_num_image_tokens(
image_width=image_size.width,
image_height=image_size.height,
max_num_tiles=max_num_tiles,
processor=hf_processor,
)
num_patches = None
local_image_num_patches = image_num_patches
if isinstance(local_image_num_patches, torch.Tensor):
local_image_num_patches = local_image_num_patches.tolist()
if isinstance(local_image_num_patches, (list, tuple)) and item_idx < len(
local_image_num_patches
):
num_patches = int(local_image_num_patches[item_idx])
return hf_processor.get_image_repl(feature_size, num_patches)
return [
PromptReplacement(
modality="image",
target="<image>",
replacement=get_replacement_custom,
)
]
class NanoNemotronVLMultiModalProcessor(
NanoNemotronBaseVLMultiModalProcessor[NanoNemotronVLProcessingInfo]
):
"""MultiModalProcessor extended for video support"""
def _get_data_parser(self) -> MultiModalDataParser:
return MultiModalDataParser(video_needs_metadata=True)
def _get_mm_fields_config(
self,
hf_inputs: BatchFeature,
hf_processor_mm_kwargs: Mapping[str, object],
) -> Mapping[str, MultiModalFieldConfig]:
image_fields = super()._get_mm_fields_config(hf_inputs, hf_processor_mm_kwargs)
if self.info.supports_video:
video_num_patches = hf_inputs.get("video_num_patches", torch.empty(0))
video_fields = dict(
pixel_values_flat_video=MultiModalFieldConfig.flat_from_sizes(
"video", video_num_patches
),
video_num_patches=MultiModalFieldConfig.batched("video"),
frames_indices=MultiModalFieldConfig.batched("video"),
frame_duration_ms=MultiModalFieldConfig.batched("video"),
)
else:
video_fields = {}
return image_fields | video_fields
def _get_prompt_updates(
self,
mm_items: MultiModalDataItems,
hf_processor_mm_kwargs: Mapping[str, object],
out_mm_kwargs: MultiModalKwargsItems,
) -> Sequence[PromptUpdate]:
prompt_repl = super()._get_prompt_updates(
mm_items=mm_items,
hf_processor_mm_kwargs=hf_processor_mm_kwargs,
out_mm_kwargs=out_mm_kwargs,
)
hf_processor = self.info.get_hf_processor(**hf_processor_mm_kwargs)
out_mm_data = out_mm_kwargs.get_data()
if "video_num_patches" in out_mm_data:
video_num_patches = out_mm_data["video_num_patches"]
assert isinstance(video_num_patches, torch.Tensor)
video_num_patches = video_num_patches.tolist()
else:
video_num_patches = []
def get_video_replacement_internvl(item_idx: int):
feature_size = hf_processor.num_image_token
video, metadata = mm_items["video"][item_idx]
num_patches = video_num_patches[item_idx]
if num_patches is not None:
assert isinstance(num_patches, int)
video_pruning_rate = self.info.ctx.get_mm_config().video_pruning_rate
if video_pruning_rate is not None and video_pruning_rate > 0.0:
# Start of EVS-specific code
num_tokens = compute_retained_tokens_count(
tokens_per_frame=feature_size,
num_frames=num_patches,
q=video_pruning_rate,
)
# Here we just need placeholders that won't actually be replaced -
# we just need to make sure the total number of tokens is correct
# assign all tokens to the first frame
tokens_per_frame = [num_tokens] + [0] * (num_patches - 1)
# End of EVS-specific code
else:
tokens_per_frame = [feature_size] * num_patches
frame_duration_ms = int(1000 / metadata["fps"])
return hf_processor.get_video_repl(
tokens_per_frame=tokens_per_frame,
frames_indices=metadata["frames_indices"],
frame_duration_ms=frame_duration_ms,
tokenizer=hf_processor.tokenizer,
img_start_token_ids=hf_processor._img_start_token_ids,
img_end_token_ids=hf_processor._img_end_token_ids,
img_context_token_ids=hf_processor._img_context_token_ids,
)
if self.info.supports_video:
prompt_repl = [
*prompt_repl,
PromptReplacement(
modality="video",
target="<video>",
replacement=get_video_replacement_internvl,
),
]
return prompt_repl
class NanoNemotronVLDummyInputsBuilder(BaseDummyInputsBuilder[_I]):
"""Basic image-only DummyInputsBuilder for InternVL-style models."""
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_images = mm_counts.get("image", 0)
return "<image>" * num_images
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
# Use default max_num_tiles for dummy data generation
max_num_tiles = 12
target_width, target_height = self.info.get_image_size_with_most_features(
max_num_tiles
)
num_images = mm_counts.get("image", 0)
image_overrides = mm_options.get("image") if mm_options else None
return {
"image": self._get_dummy_images(
width=target_width,
height=target_height,
num_images=num_images,
overrides=image_overrides,
)
}
class NanoNemotronVLDummyInputsBuilder(
NanoNemotronVLDummyInputsBuilder[NanoNemotronVLProcessingInfo]
):
"""DummyInputsBuilder extended for video support"""
def get_dummy_text(self, mm_counts: Mapping[str, int]) -> str:
num_videos = mm_counts.get("video", 0)
return super().get_dummy_text(mm_counts) + "<video>" * num_videos
def _get_dummy_videos(
self,
*,
width: int,
height: int,
num_frames: int,
num_videos: int,
overrides: VideoDummyOptions | None = None,
) -> list[VideoItem]:
video = super()._get_dummy_videos(
width=width,
height=height,
num_frames=num_frames,
num_videos=1,
overrides=overrides,
)[0]
video_items = []
for _ in range(num_videos):
video_metadata = {
"total_num_frames": num_frames,
"fps": 2,
"duration": num_frames / 2.0,
"video_backend": "opencv_dynamic",
"frames_indices": [i for i in range(num_frames)],
"do_sample_frames": False,
}
video_item = (video.copy(), video_metadata)
video_items.append(video_item)
return video_items
def get_dummy_mm_data(
self,
seq_len: int,
mm_counts: Mapping[str, int],
mm_options: Mapping[str, BaseDummyOptions] | None = None,
) -> MultiModalDataDict:
dummy_image = super().get_dummy_mm_data(
seq_len=seq_len, mm_counts=mm_counts, mm_options=mm_options
)
if self.info.supports_video:
config = self.info.get_hf_config()
image_size: int = config.force_image_size
target_num_frames = self.info.get_num_frames_with_most_features(
seq_len, mm_counts
)
num_videos = mm_counts.get("video", 0)
video_overrides = mm_options.get("video") if mm_options else None
dummy_video = {
"video": self._get_dummy_videos(
width=image_size,
height=image_size,
num_frames=target_num_frames,
num_videos=num_videos,
overrides=video_overrides,
)
}
else:
dummy_video = {}
return {**dummy_image, **dummy_video}
@MULTIMODAL_REGISTRY.register_processor(
NanoNemotronVLMultiModalProcessor,
info=NanoNemotronVLProcessingInfo,
dummy_inputs=NanoNemotronVLDummyInputsBuilder,
)
class NemotronH_Nano_VL_V2(
nn.Module, HasInnerState, IsHybrid, SupportsMultiModal, SupportsMultiModalPruning
):
merge_by_field_config = True
@classmethod
def get_placeholder_str(cls, modality: str, i: int) -> str | None:
if modality.startswith("image"):
return "<image>"
if modality.startswith("video"):
return "<video>"
return None
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""):
super().__init__()
config = vllm_config.model_config.hf_config
multimodal_config = vllm_config.model_config.multimodal_config
image_size = config.force_image_size
patch_size = config.patch_size
self.patch_size = patch_size
self.template = config.template
self.num_image_token = int(
(image_size // patch_size) ** 2 * (config.downsample_ratio**2)
)
self.downsample_ratio = config.downsample_ratio
self.ps_version = config.ps_version
self.image_tag_type = config.image_tag_type
self.video_pruning_rate = multimodal_config.video_pruning_rate
self.language_model = init_vllm_registered_model(
vllm_config=vllm_config,
hf_config=config.text_config,
prefix=maybe_prefix(prefix, "language_model"),
)
self.vision_model = self.get_vit_model_from_radio_config(config).to(
self.language_model.config.dtype
)
# Construct the vision projection.
vit_hidden_size = config.vit_hidden_size
vision_projection_hidden_size = config.projector_hidden_size
llm_hidden_size = config.text_config.hidden_size
self.mlp1 = nn.Sequential(
RMSNorm(
hidden_size=vit_hidden_size * int(1 / self.downsample_ratio) ** 2,
eps=1e-5,
),
nn.Linear(
vit_hidden_size * int(1 / self.downsample_ratio) ** 2,
vision_projection_hidden_size,
bias=False,
),
ReLUSquaredActivation(),
nn.Linear(vision_projection_hidden_size, llm_hidden_size, bias=False),
)
self.mlp1 = self.mlp1.to(self.language_model.config.dtype)
self.config = config
self.model_config = vllm_config.model_config
# Pre-tokenize special tokens for video processing
# to avoid repeated tokenization
tokenizer = cached_tokenizer_from_config(vllm_config.model_config)
self._img_start_token_ids = encode_tokens(
tokenizer, IMG_START, add_special_tokens=False
)
self._img_end_token_ids = encode_tokens(
tokenizer, IMG_END, add_special_tokens=False
)
self._img_context_token_ids = encode_tokens(
tokenizer, IMG_CONTEXT, add_special_tokens=False
)
def pixel_shuffle(self, x, scale_factor=0.5):
n, w, h, c = x.size()
# N, W, H, C --> N, W, H * scale, C // scale
x = x.view(
n,
w,
int(h * scale_factor),
int(c / scale_factor),
)
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
x = x.permute(0, 2, 1, 3).contiguous()
# N, H * scale, W, C // scale -->
# N, H * scale, W * scale, C // (scale ** 2)
x = x.view(
n,
int(h * scale_factor),
int(w * scale_factor),
int(c / (scale_factor * scale_factor)),
)
if self.ps_version == "v1":
warnings.warn(
"In ps_version 'v1', the height and width have not "
"been swapped back, which results in a transposed image.",
stacklevel=2,
)
else:
x = x.permute(0, 2, 1, 3).contiguous()
return x
def extract_feature(self, pixel_values):
# Process images in a micro-batch of at most 128 frames per call
# This is done on purpose to ensure peak GPU ram usage of huge batch
# (namely for really long videos with EVS ON) won't cause any problems
# as we don't support chunked prefill for video media
micro_batch_size = 128
n = pixel_values.shape[0]
vit_embeds_list = []
for i in range(0, n, micro_batch_size):
vit_embeds = self.vision_model(pixel_values[i : i + micro_batch_size])
vit_embeds = vit_embeds.to(dtype=torch.bfloat16)
h = w = int(vit_embeds.shape[1] ** 0.5)
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
vit_embeds = self.pixel_shuffle(
vit_embeds, scale_factor=self.downsample_ratio
)
vit_embeds = vit_embeds.reshape(
vit_embeds.shape[0], -1, vit_embeds.shape[-1]
)
vit_embeds = self.mlp1(vit_embeds)
vit_embeds_list.append(vit_embeds)
vit_embeds = torch.cat(vit_embeds_list, dim=0)
return vit_embeds
def _parse_and_validate_image_input(
self, **kwargs: object
) -> NanoNemotronVLImageInputs | None:
pixel_values_flat = kwargs.pop("pixel_values_flat", None)
image_num_patches = kwargs.pop("image_num_patches", None)
image_embeds = kwargs.pop("image_embeds", None)
if pixel_values_flat is None and image_embeds is None:
return None
if image_embeds is not None:
return NanoNemotronVLImageEmbeddingInputs(
type="image_embeds",
data=image_embeds,
)
if pixel_values_flat is not None:
return NanoNemotronVLImagePixelInputs(
type="pixel_values",
pixel_values_flat=pixel_values_flat,
num_patches=image_num_patches,
)
raise AssertionError("This line should be unreachable.")
def _process_image_input(
self, image_input: NanoNemotronVLImageInputs
) -> tuple[torch.Tensor, ...]:
if image_input["type"] == "image_embeds":
return image_input["data"]
assert self.vision_model is not None
image_embeds = self.extract_feature(image_input["pixel_values_flat"])
num_patches = image_input["num_patches"]
# Only one image in the current batch
if len(num_patches) == 1:
return (image_embeds.view(-1, self.config.text_config.hidden_size),)
# NOTE: Image embeddings are split into separate tensors for each image
# by the size of each embedding.
feature_size = image_embeds.shape[1]
image_embeds = image_embeds.view(-1, self.config.text_config.hidden_size)
image_feature_sizes = [
num_patches * feature_size for num_patches in num_patches
]
return image_embeds.split(image_feature_sizes)
def _process_video_input(
self, video_input: NanoNemotronVLVideoPixelInputs
) -> tuple[torch.Tensor, ...]:
"""Process video input and create final embeddings with video content
and indicator tokens."""
# Get video embeddings using the same processing as images
video_embeddings = self._process_image_input(video_input)
final_video_embeddings: tuple[torch.Tensor, ...] = ()
image_rows = image_cols = self.config.force_image_size
downsample_ratio = self.config.downsample_ratio
patch_size = self.config.patch_size
rows = int(image_rows * downsample_ratio // patch_size)
cols = int(image_cols * downsample_ratio // patch_size)
video_pruning_rate = self.video_pruning_rate
video_num_frames = video_input["num_patches"].tolist()
video_frames_indices = video_input["frames_indices"].split(video_num_frames)
# Calculate video feature dimensions (number of frames and
# their feature size (AKA tokens per frame))
# TODO: Maybe this can be optimized to avoid the loop?
for i, single_video_embeddings in enumerate(video_embeddings):
num_frames = video_num_frames[i]
frames_indices = video_frames_indices[i].tolist()
frame_duration_ms = video_input["frame_duration_ms"][i].item()
assert single_video_embeddings.shape[0] % num_frames == 0
if video_pruning_rate is not None and video_pruning_rate > 0.0:
# Start of EVS-specific code
retention_mask = compute_retention_mask(
single_video_embeddings,
video_size_thw=(num_frames, rows, cols),
spatial_merge_size=1,
q=video_pruning_rate,
)
# apply retention mask
single_video_embeddings = single_video_embeddings[retention_mask]
# calculate the actual number of retained tokens per frame
retention_mask_thw = retention_mask.reshape(num_frames, rows, cols)
num_tokens_per_frame = (
retention_mask_thw.sum(dim=(1, 2)).long().tolist()
)
# End of EVS-specific code
else:
feature_size = single_video_embeddings.shape[0] // num_frames
num_tokens_per_frame = [feature_size] * num_frames
final_video_embeddings += (
self._create_final_video_embeddings(
single_video_embeddings,
num_tokens_per_frame,
frames_indices,
frame_duration_ms,
),
)
return final_video_embeddings
def _create_final_video_embeddings(
self,
video_embeddings: torch.Tensor,
num_tokens_per_frame: list[int],
frames_indices: list[int],
frame_duration_ms: int,
) -> torch.Tensor:
"""Create final embeddings that combine video embeddings with
text embeddings of indicator tokens.
These final embeddings contain:
- Actual video embeddings in positions corresponding to video content
- Text embeddings for indicator tokens (<img>, </img>, and
frame separation text) in their respective positions
These embeddings will replace the placeholder embeddings to create
input_embeds for the LLM.
"""
device = video_embeddings.device
tokenizer = cached_tokenizer_from_config(self.model_config)
# Generate video replacement token IDs using get_video_repl
# This tokenizes each frame separator independently, then uses pre-tokenized
# special tokens to ensure consistent tokenization regardless of
# num_tokens_per_frame values.
video_repl = NanoNemotronVLProcessor.get_video_repl(
tokens_per_frame=num_tokens_per_frame,
frames_indices=frames_indices,
frame_duration_ms=frame_duration_ms,
tokenizer=tokenizer,
img_start_token_ids=self._img_start_token_ids,
img_end_token_ids=self._img_end_token_ids,
img_context_token_ids=self._img_context_token_ids,
)
# video_repl.full is a list of token IDs
repl_token_ids = torch.tensor(video_repl.full, device=device)
# Get embedding token IDs for image context (use pre-tokenized version)
embed_token_ids = torch.tensor(self._img_context_token_ids, device=device)
# Create mask for video embedding positions
is_video_embed = torch.isin(repl_token_ids, embed_token_ids)
# Create final video embeddings, merging text embeddings for indicator
# tokens with video embeddings
text_embeddings = self.get_language_model().embed_input_ids(repl_token_ids)
final_video_embeddings = _merge_multimodal_embeddings(
inputs_embeds=text_embeddings,
multimodal_embeddings=video_embeddings,
is_multimodal=is_video_embed,
)
return final_video_embeddings
def _parse_and_validate_video_input(
self, **kwargs: object
) -> NanoNemotronVLVideoPixelInputs | None:
pixel_values_flat_video = kwargs.pop("pixel_values_flat_video", None)
video_num_patches = kwargs.pop("video_num_patches", None)
video_embeds = kwargs.pop("video_embeds", None)
frames_indices = kwargs.pop("frames_indices", None)
frame_duration_ms = kwargs.pop("frame_duration_ms", None)
if pixel_values_flat_video is None and video_embeds is None:
return None
if video_embeds is not None:
return NanoNemotronVLVideoEmbeddingInputs(
type="video_embeds",
data=video_embeds,
)
if pixel_values_flat_video is not None:
if torch.is_tensor(frames_indices):
frames_indices = frames_indices.flatten()
else:
frames_indices = torch.cat([f.flatten() for f in frames_indices], dim=0)
frame_duration_ms = frame_duration_ms.flatten()
expected_h = expected_w = self.config.force_image_size
num_frames = video_num_patches[0].item()
resolve_bindings = {"h": expected_h, "w": expected_w, "f": num_frames}
return NanoNemotronVLVideoPixelInputs(
type="pixel_values_videos",
pixel_values_flat=pixel_values_flat_video,
num_patches=video_num_patches,
frames_indices=frames_indices,
frame_duration_ms=frame_duration_ms,
resolve_bindings=resolve_bindings,
)
raise AssertionError("This line should be unreachable.")
def _parse_and_validate_multimodal_inputs(self, **kwargs: object) -> dict:
modalities = {}
# Preserve the order of modalities if there are multiple of them
# from the order of kwargs.
for input_key in kwargs:
if (
input_key in ("pixel_values_flat", "image_embeds")
and "images" not in modalities
):
modalities["images"] = self._parse_and_validate_image_input(**kwargs)
if input_key in ("pixel_values_flat_video",) and "videos" not in modalities:
modalities["videos"] = self._parse_and_validate_video_input(**kwargs)
return modalities
def embed_multimodal(self, **kwargs: object) -> MultiModalEmbeddings:
# Validate the multimodal input keyword arguments
modalities = self._parse_and_validate_multimodal_inputs(**kwargs)
if modalities is None:
return []
# # The result multimodal_embeddings is tuple of tensors, with each
# tensor correspoending to a multimodal data item (image or video).
multimodal_embeddings: tuple[torch.Tensor, ...] = ()
# NOTE: It is important to iterate over the keys in this dictionary
# to preserve the order of the modalities.
for modality in modalities:
if modality == "images":
image_input = modalities["images"]
image_embeddings = self._process_image_input(image_input)
multimodal_embeddings += tuple(image_embeddings)
if modality == "videos":
video_input = modalities["videos"]
video_embeddings = self._process_video_input(video_input)
multimodal_embeddings += tuple(video_embeddings)
return multimodal_embeddings
def get_language_model(self) -> torch.nn.Module:
return self.language_model
def forward(
self,
input_ids: torch.Tensor,
positions: torch.Tensor,
intermediate_tensors: IntermediateTensors | None = None,
inputs_embeds: torch.Tensor | None = None,
**kwargs: object,
) -> torch.Tensor | IntermediateTensors:
if intermediate_tensors is not None:
input_ids = None
inputs_embeds = None
hidden_states = self.language_model(
input_ids=input_ids,
positions=positions,
intermediate_tensors=intermediate_tensors,
inputs_embeds=inputs_embeds,
**kwargs,
)
return hidden_states
def get_mm_mapping(self) -> MultiModelKeys:
"""
Get the module prefix in multimodal models
"""
return MultiModelKeys.from_string_field(
language_model="language_model",
connector="mlp1",
tower_model="vision_model",
)
def compute_logits(
self,
hidden_states: torch.Tensor,
) -> torch.Tensor | None:
return self.language_model.compute_logits(hidden_states)
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]):
adapter_dict = dict(self.mlp1.named_parameters())
def is_llm(name: str) -> bool:
return name.startswith("language_model")
def is_adapter_weights(weight: tuple[str, torch.Tensor]):
return weight[0].startswith("mlp1")
def is_vision_weights(name: str) -> bool:
return name.startswith("vision_model.radio_model.")
# Separate weights by component
llm_weights = []
vision_weights = []
for name, w in weights:
if is_llm(name):
# Strip 'language_model.' prefix for LLM weights
llm_weights.append((".".join(name.split(".")[1:]), w))
elif is_adapter_weights((name, w)):
# Load vision-language adapter weights directly
trimmed_name = ".".join(name.split(".")[1:])
param = adapter_dict[trimmed_name]
with torch.no_grad():
default_weight_loader(param, w)
elif is_vision_weights(name):
# Convert: vision_model.radio_model.* → radio_model.*
hf_key = name[len("vision_model.") :] # Remove "vision_model." prefix
vision_weights.append((hf_key, w))
self.language_model.load_weights(llm_weights)
self.vision_model.load_weights(vision_weights)
def print_architecture(self, detailed: bool = True, save_to_file: str = None):
"""
Print model architecture with parameter names, shapes, and sizes.
Args:
detailed: If True, show detailed parameter breakdown
save_to_file: If provided, save output to this file path
"""
import sys
from io import StringIO
# Capture output if saving to file
original_stdout = sys.stdout
if save_to_file:
sys.stdout = StringIO()
try:
print("=" * 100)
print("NemotronH_Nano_VL_V2 Model Architecture")
print("=" * 100)
total_params = 0
param_groups = {
"language_model": [],
"vision_model": [],
"mlp1": [],
"other": [],
}
for name, param in self.named_parameters():
param_size = param.numel()
total_params += param_size
# Group parameters by main component
if name.startswith("language_model"):
param_groups["language_model"].append(
(name, param.shape, param_size, param.dtype)
)
elif name.startswith("vision_model"):
param_groups["vision_model"].append(
(name, param.shape, param_size, param.dtype)
)
elif name.startswith("mlp1"):
param_groups["mlp1"].append(
(name, param.shape, param_size, param.dtype)
)
else:
param_groups["other"].append(
(name, param.shape, param_size, param.dtype)
)
if detailed:
print(
f"{name:<70} | Shape: {str(param.shape):<25} | "
f"Size: {param_size:>12,} | Dtype: {param.dtype}"
)
print("=" * 100)
print("Summary by Component:")
print("-" * 60)
for component, params in param_groups.items():
if params: # Only show components that have parameters
component_total = sum(size for _, _, size, _ in params)
percentage = (
(component_total / total_params) * 100
if total_params > 0
else 0
)
print(
f"{component:<20} | Parameters: {len(params):>4} | "
f"Total Size: {component_total:>15,} | "
f"{percentage:>6.2f}%"
)
print("-" * 60)
print(f"{'Total Parameters':<20} | {total_params:>15,}")
# Estimate memory usage (assuming bfloat16 = 2 bytes per parameter)
memory_mb = total_params * 2 / (1024**2)
memory_gb = memory_mb / 1024
print(f"{'Est. Memory (MB)':<20} | {memory_mb:>15.2f}")
print(f"{'Est. Memory (GB)':<20} | {memory_gb:>15.2f}")
print("=" * 100)
# Save to file if requested
if save_to_file:
output = sys.stdout.getvalue()
sys.stdout = original_stdout
with open(save_to_file, "w") as f:
f.write(output)
print(f"Architecture saved to: {save_to_file}")
print(output) # Also print to console
finally:
if save_to_file and sys.stdout != original_stdout:
sys.stdout = original_stdout
def get_model_info(self):
"""
Get basic model information as a dictionary.
"""
total_params = sum(p.numel() for p in self.parameters())
component_info = {}
for name, param in self.named_parameters():
component = name.split(".")[0]
if component not in component_info:
component_info[component] = {"params": 0, "size": 0}
component_info[component]["params"] += 1
component_info[component]["size"] += param.numel()
return {
"model_name": "NemotronH_Nano_VL_V2",
"total_parameters": total_params,
"memory_estimate_mb": total_params * 2 / (1024**2), # bfloat16
"components": component_info,
"config": {
"image_size": getattr(self.config, "force_image_size", None),
"patch_size": getattr(self.config, "patch_size", None),
"num_image_token": self.num_image_token,
"downsample_ratio": self.downsample_ratio,
},
}
def get_vit_model_from_radio_config(self, hf_config):
hf_config_vision = hf_config.vision_config
model_name = hf_config_vision.args.get("model")
if model_name is None:
raise ValueError(f"Unsupported vit model type: {model_name}")
preferred_resolution = getattr(hf_config_vision, "preferred_resolution", None)
image_size = preferred_resolution[0] if preferred_resolution else 224
patch_size = getattr(hf_config_vision, "patch_size", 16)
radio_config = RadioConfig(
model_name=model_name,
image_size=image_size,
patch_size=patch_size,
norm_mean=hf_config.norm_mean,
norm_std=hf_config.norm_std,
reg_tokens=(
hf_config_vision.args.get("register_multiple")
if hasattr(hf_config_vision, "args")
and isinstance(hf_config_vision.args, dict)
else None
),
)
return RadioModel(config=radio_config)
def copy_inputs_before_cuda_graphs(self, input_buffers, **kwargs):
return self.language_model.mamba_cache.copy_inputs_before_cuda_graphs(
input_buffers, **kwargs
)
def get_seqlen_agnostic_capture_inputs(self, batch_size: int):
return self.language_model.mamba_cache.get_seqlen_agnostic_capture_inputs(
batch_size
)
@classmethod
def get_mamba_state_shape_from_config(cls, vllm_config: "VllmConfig"):
text_config = vllm_config.model_config.hf_config.text_config
temp_vllm_config = copy.deepcopy(vllm_config)
temp_vllm_config.model_config.hf_config = text_config
return NemotronHForCausalLM.get_mamba_state_shape_from_config(temp_vllm_config)
@classmethod
def get_mamba_state_dtype_from_config(cls, vllm_config: "VllmConfig"):
text_config = vllm_config.model_config.hf_config.text_config
temp_vllm_config = copy.deepcopy(vllm_config)
temp_vllm_config.model_config.hf_config = text_config
return NemotronHForCausalLM.get_mamba_state_dtype_from_config(temp_vllm_config)