vllm/tests/entrypoints/pooling/openai/test_vision_embedding.py
Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

102 lines
3.5 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import json
import pytest
import requests
from transformers import AutoProcessor
from tests.utils import VLLM_PATH, RemoteOpenAIServer
from vllm.entrypoints.openai.protocol import EmbeddingResponse
from vllm.multimodal.utils import encode_image_base64, fetch_image
MODEL_NAME = "TIGER-Lab/VLM2Vec-Full"
MAXIMUM_IMAGES = 2
vlm2vec_jinja_path = VLLM_PATH / "examples/template_vlm2vec_phi3v.jinja"
assert vlm2vec_jinja_path.exists()
# Test different image extensions (JPG/PNG) and formats (gray/RGB/RGBA)
TEST_IMAGE_ASSETS = [
"2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg", # "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
"Grayscale_8bits_palette_sample_image.png", # "https://upload.wikimedia.org/wikipedia/commons/f/fa/Grayscale_8bits_palette_sample_image.png",
"1280px-Venn_diagram_rgb.svg.png", # "https://upload.wikimedia.org/wikipedia/commons/thumb/9/91/Venn_diagram_rgb.svg/1280px-Venn_diagram_rgb.svg.png",
"RGBA_comp.png", # "https://upload.wikimedia.org/wikipedia/commons/0/0b/RGBA_comp.png",
]
@pytest.fixture(scope="module")
def server():
args = [
"--runner",
"pooling",
"--max-model-len",
"2048",
"--max-num-seqs",
"5",
"--enforce-eager",
"--trust-remote-code",
"--limit-mm-per-prompt",
json.dumps({"image": MAXIMUM_IMAGES}),
"--chat-template",
str(vlm2vec_jinja_path),
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest.fixture(scope="session")
def base64_encoded_image(local_asset_server) -> dict[str, str]:
return {
image_url: encode_image_base64(local_asset_server.get_image_asset(image_url))
for image_url in TEST_IMAGE_ASSETS
}
def get_hf_prompt_tokens(model_name, content, image_url):
processor = AutoProcessor.from_pretrained(
model_name, trust_remote_code=True, num_crops=4
)
placeholder = "<|image_1|> "
prompt = f"{placeholder}{content}"
images = [fetch_image(image_url)]
inputs = processor(prompt, images, return_tensors="pt")
return inputs.input_ids.shape[1]
@pytest.mark.asyncio
@pytest.mark.parametrize("model_name", [MODEL_NAME])
@pytest.mark.parametrize("image_url", TEST_IMAGE_ASSETS, indirect=True)
async def test_image_embedding(
server: RemoteOpenAIServer, model_name: str, image_url: str
):
content_text = "Represent the given image."
messages = [
{
"role": "user",
"content": [
{"type": "image_url", "image_url": {"url": image_url}},
{"type": "text", "text": content_text},
],
}
]
response = requests.post(
server.url_for("v1/embeddings"),
json={"model": model_name, "messages": messages, "encoding_format": "float"},
)
response.raise_for_status()
embeddings = EmbeddingResponse.model_validate(response.json())
hf_prompt_tokens = get_hf_prompt_tokens(model_name, content_text, image_url)
assert embeddings.id is not None
assert len(embeddings.data) == 1
assert len(embeddings.data[0].embedding) == 3072
assert embeddings.usage.completion_tokens == 0
assert embeddings.usage.prompt_tokens == hf_prompt_tokens
assert embeddings.usage.total_tokens == hf_prompt_tokens