vllm/vllm/config/profiler.py
Benjamin Chislett e858bfe051
[Cleanup] Refactor profiling env vars into a CLI config (#29912)
Signed-off-by: Benjamin Chislett <bchislett@nvidia.com>
Signed-off-by: Benjamin Chislett <chislett.ben@gmail.com>
Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
Co-authored-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-12-09 13:29:33 -05:00

200 lines
7.4 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import os
from typing import Any, Literal
from pydantic import Field, model_validator
from pydantic.dataclasses import dataclass
from typing_extensions import Self
import vllm.envs as envs
from vllm.config.utils import config
from vllm.logger import init_logger
from vllm.utils.hashing import safe_hash
logger = init_logger(__name__)
ProfilerKind = Literal["torch", "cuda"]
@config
@dataclass
class ProfilerConfig:
"""Dataclass which contains profiler config for the engine."""
profiler: ProfilerKind | None = None
"""Which profiler to use. Defaults to None. Options are:
- 'torch': Use PyTorch profiler.\n
- 'cuda': Use CUDA profiler."""
torch_profiler_dir: str = ""
"""Directory to save torch profiler traces. Both AsyncLLM's CPU traces and
worker's traces (CPU & GPU) will be saved under this directory. Note that
it must be an absolute path."""
torch_profiler_with_stack: bool = True
"""If `True`, enables stack tracing in the torch profiler. Enabled by default."""
torch_profiler_with_flops: bool = False
"""If `True`, enables FLOPS counting in the torch profiler. Disabled by default."""
torch_profiler_use_gzip: bool = True
"""If `True`, saves torch profiler traces in gzip format. Enabled by default"""
torch_profiler_dump_cuda_time_total: bool = True
"""If `True`, dumps total CUDA time in torch profiler traces. Enabled by default."""
torch_profiler_record_shapes: bool = False
"""If `True`, records tensor shapes in the torch profiler. Disabled by default."""
torch_profiler_with_memory: bool = False
"""If `True`, enables memory profiling in the torch profiler.
Disabled by default."""
ignore_frontend: bool = False
"""If `True`, disables the front-end profiling of AsyncLLM when using the
'torch' profiler. This is needed to reduce overhead when using delay/limit options,
since the front-end profiling does not track iterations and will capture the
entire range.
"""
delay_iterations: int = Field(default=0, ge=0)
"""Number of engine iterations to skip before starting profiling.
Defaults to 0, meaning profiling starts immediately after receiving /start_profile.
"""
max_iterations: int = Field(default=0, ge=0)
"""Maximum number of engine iterations to profile after starting profiling.
Defaults to 0, meaning no limit.
"""
def compute_hash(self) -> str:
"""
WARNING: Whenever a new field is added to this config,
ensure that it is included in the factors list if
it affects the computation graph.
Provide a hash that uniquely identifies all the configs
that affect the structure of the computation
graph from input ids/embeddings to the final hidden states,
excluding anything before input ids/embeddings and after
the final hidden states.
"""
# no factors to consider.
# this config will not affect the computation graph.
factors: list[Any] = []
hash_str = safe_hash(str(factors).encode(), usedforsecurity=False).hexdigest()
return hash_str
def _get_from_env_if_set(self, field_name: str, env_var_name: str) -> None:
"""Get field from env var if set, with deprecation warning."""
if envs.is_set(env_var_name):
value = getattr(envs, env_var_name)
logger.warning_once(
"Using %s environment variable is deprecated and will be removed in "
"v0.14.0 or v1.0.0, whichever is soonest. Please use "
"--profiler-config.%s command line argument or "
"ProfilerConfig(%s=...) config field instead.",
env_var_name,
field_name,
field_name,
)
return value
return None
def _set_from_env_if_set(
self,
field_name: str,
env_var_name: str,
to_bool: bool = True,
to_int: bool = False,
) -> None:
"""Set field from env var if set, with deprecation warning."""
value = self._get_from_env_if_set(field_name, env_var_name)
if value is not None:
if to_bool:
value = value == "1"
if to_int:
value = int(value)
setattr(self, field_name, value)
@model_validator(mode="after")
def _validate_profiler_config(self) -> Self:
maybe_use_cuda_profiler = self._get_from_env_if_set(
"profiler", "VLLM_TORCH_CUDA_PROFILE"
)
if maybe_use_cuda_profiler is not None:
self.profiler = "cuda" if maybe_use_cuda_profiler == "1" else None
else:
self._set_from_env_if_set(
"torch_profiler_dir", "VLLM_TORCH_PROFILER_DIR", to_bool=False
)
if self.torch_profiler_dir:
self.profiler = "torch"
self._set_from_env_if_set(
"torch_profiler_record_shapes",
"VLLM_TORCH_PROFILER_RECORD_SHAPES",
)
self._set_from_env_if_set(
"torch_profiler_with_memory",
"VLLM_TORCH_PROFILER_WITH_PROFILE_MEMORY",
)
self._set_from_env_if_set(
"torch_profiler_with_stack",
"VLLM_TORCH_PROFILER_WITH_STACK",
)
self._set_from_env_if_set(
"torch_profiler_with_flops",
"VLLM_TORCH_PROFILER_WITH_FLOPS",
)
self._set_from_env_if_set(
"ignore_frontend",
"VLLM_TORCH_PROFILER_DISABLE_ASYNC_LLM",
)
self._set_from_env_if_set(
"torch_profiler_use_gzip",
"VLLM_TORCH_PROFILER_USE_GZIP",
)
self._set_from_env_if_set(
"torch_profiler_dump_cuda_time_total",
"VLLM_TORCH_PROFILER_DUMP_CUDA_TIME_TOTAL",
)
self._set_from_env_if_set(
"delay_iterations", "VLLM_PROFILER_DELAY_ITERS", to_bool=False, to_int=True
)
self._set_from_env_if_set(
"max_iterations", "VLLM_PROFILER_MAX_ITERS", to_bool=False, to_int=True
)
has_delay_or_limit = self.delay_iterations > 0 or self.max_iterations > 0
if self.profiler == "torch" and has_delay_or_limit and not self.ignore_frontend:
logger.warning_once(
"Using 'torch' profiler with delay_iterations or max_iterations "
"while ignore_frontend is False may result in high overhead."
)
profiler_dir = self.torch_profiler_dir
if profiler_dir and self.profiler != "torch":
raise ValueError(
"torch_profiler_dir is only applicable when profiler is set to 'torch'"
)
if self.profiler == "torch" and not profiler_dir:
raise ValueError("torch_profiler_dir must be set when profiler is 'torch'")
if profiler_dir:
is_gs_path = (
profiler_dir.startswith("gs://")
and profiler_dir[5:]
and profiler_dir[5] != "/"
)
if not is_gs_path:
self.torch_profiler_dir = os.path.abspath(
os.path.expanduser(profiler_dir)
)
return self