Russell Bryant e489ad7a21
[Misc] Add SPDX-License-Identifier headers to python source files (#12628)
- **Add SPDX license headers to python source files**
- **Check for SPDX headers using pre-commit**

commit 9d7ef44c3cfb72ca4c32e1c677d99259d10d4745
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:18:24 2025 -0500

    Add SPDX license headers to python source files
    
This commit adds SPDX license headers to python source files as
recommended to
the project by the Linux Foundation. These headers provide a concise way
that is
both human and machine readable for communicating license information
for each
source file. It helps avoid any ambiguity about the license of the code
and can
    also be easily used by tools to help manage license compliance.
    
The Linux Foundation runs license scans against the codebase to help
ensure
    we are in compliance with the licenses of the code we use, including
dependencies. Having these headers in place helps that tool do its job.
    
    More information can be found on the SPDX site:
    
    - https://spdx.dev/learn/handling-license-info/
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

commit 5a1cf1cb3b80759131c73f6a9dddebccac039dea
Author: Russell Bryant <rbryant@redhat.com>
Date:   Fri Jan 31 14:36:32 2025 -0500

    Check for SPDX headers using pre-commit
    
    Signed-off-by: Russell Bryant <rbryant@redhat.com>

---------

Signed-off-by: Russell Bryant <rbryant@redhat.com>
2025-02-02 11:58:18 -08:00

271 lines
8.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
from typing import List, Optional, Tuple, Type
import numpy as np
import pytest
import pytest_asyncio
from transformers import AutoModel, AutoTokenizer, BatchEncoding
from vllm.multimodal.audio import resample_audio
from vllm.sequence import SampleLogprobs
from vllm.utils import STR_DTYPE_TO_TORCH_DTYPE
from ....conftest import HfRunner, VllmRunner
from ....utils import RemoteOpenAIServer
from ...utils import check_logprobs_close
MODEL_NAME = "fixie-ai/ultravox-v0_3"
AudioTuple = Tuple[np.ndarray, int]
VLLM_PLACEHOLDER = "<|audio|>"
HF_PLACEHOLDER = "<|audio|>"
CHUNKED_PREFILL_KWARGS = {
"enable_chunked_prefill": True,
"max_num_seqs": 2,
# Use a very small limit to exercise chunked prefill.
"max_num_batched_tokens": 16
}
@pytest.fixture(scope="session")
def audio_assets():
from vllm.assets.audio import AudioAsset
return [AudioAsset("mary_had_lamb"), AudioAsset("winning_call")]
@pytest.fixture(scope="module", params=("mary_had_lamb", "winning_call"))
def audio(request):
from vllm.assets.audio import AudioAsset
return AudioAsset(request.param)
@pytest.fixture(params=[
pytest.param({}, marks=pytest.mark.cpu_model),
pytest.param(CHUNKED_PREFILL_KWARGS),
])
def server(request, audio_assets):
args = [
"--dtype=bfloat16", "--max-model-len=4096", "--enforce-eager",
f"--limit-mm-per-prompt=audio={len(audio_assets)}",
"--trust-remote-code"
] + [
f"--{key.replace('_','-')}={value}"
for key, value in request.param.items()
]
with RemoteOpenAIServer(MODEL_NAME, args) as remote_server:
yield remote_server
@pytest_asyncio.fixture
async def client(server):
async with server.get_async_client() as async_client:
yield async_client
def _get_prompt(audio_count, question, placeholder):
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
placeholder = f"{placeholder}\n" * audio_count
return tokenizer.apply_chat_template([{
'role': 'user',
'content': f"{placeholder}{question}"
}],
tokenize=False,
add_generation_prompt=True)
def vllm_to_hf_output(vllm_output: Tuple[List[int], str,
Optional[SampleLogprobs]],
model: str):
"""Sanitize vllm output to be comparable with hf output."""
output_ids, output_str, out_logprobs = vllm_output
tokenizer = AutoTokenizer.from_pretrained(model)
eos_token_id = tokenizer.eos_token_id
hf_output_ids = output_ids[:]
hf_output_str = output_str
if hf_output_ids[-1] == eos_token_id:
hf_output_str = hf_output_str + tokenizer.decode(eos_token_id)
return hf_output_ids, hf_output_str, out_logprobs
def run_test(
hf_runner: Type[HfRunner],
vllm_runner: Type[VllmRunner],
prompts_and_audios: List[Tuple[str, str, AudioTuple]],
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
**kwargs,
):
"""Inference result should be the same between hf and vllm."""
torch_dtype = STR_DTYPE_TO_TORCH_DTYPE[dtype]
# NOTE: take care of the order. run vLLM first, and then run HF.
# vLLM needs a fresh new process without cuda initialization.
# if we run HF first, the cuda initialization will be done and it
# will hurt multiprocessing backend with fork method (the default method).
with vllm_runner(model, dtype=dtype, enforce_eager=True,
**kwargs) as vllm_model:
vllm_outputs_per_audio = [
vllm_model.generate_greedy_logprobs([vllm_prompt],
max_tokens,
num_logprobs=num_logprobs,
audios=[audio])
for vllm_prompt, _, audio in prompts_and_audios
]
def process(hf_inputs: BatchEncoding, **kwargs):
hf_inputs["audio_values"] = hf_inputs["audio_values"] \
.to(torch_dtype) # type: ignore
return hf_inputs
with hf_runner(model,
dtype=dtype,
postprocess_inputs=process,
auto_cls=AutoModel) as hf_model:
hf_outputs_per_audio = [
hf_model.generate_greedy_logprobs_limit(
[hf_prompt],
max_tokens,
num_logprobs=num_logprobs,
audios=[(resample_audio(audio[0],
orig_sr=audio[1],
target_sr=16000), 16000)])
for _, hf_prompt, audio in prompts_and_audios
]
for hf_outputs, vllm_outputs in zip(hf_outputs_per_audio,
vllm_outputs_per_audio):
check_logprobs_close(
outputs_0_lst=hf_outputs,
outputs_1_lst=[
vllm_to_hf_output(vllm_output, model)
for vllm_output in vllm_outputs
],
name_0="hf",
name_1="vllm",
)
def run_multi_audio_test(
vllm_runner: Type[VllmRunner],
prompts_and_audios: List[Tuple[str, List[AudioTuple]]],
model: str,
*,
dtype: str,
max_tokens: int,
num_logprobs: int,
**kwargs,
):
with vllm_runner(model,
dtype=dtype,
enforce_eager=True,
limit_mm_per_prompt={
"audio":
max((len(audio) for _, audio in prompts_and_audios))
},
**kwargs) as vllm_model:
vllm_outputs = vllm_model.generate_greedy_logprobs(
[prompt for prompt, _ in prompts_and_audios],
max_tokens,
num_logprobs=num_logprobs,
audios=[audios for _, audios in prompts_and_audios])
# The HuggingFace model doesn't support multiple audios yet, so
# just assert that some tokens were generated.
assert all(tokens for tokens, *_ in vllm_outputs)
@pytest.mark.core_model
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize("vllm_kwargs", [
pytest.param({}, marks=pytest.mark.cpu_model),
pytest.param(CHUNKED_PREFILL_KWARGS),
])
def test_models(hf_runner, vllm_runner, audio, dtype: str, max_tokens: int,
num_logprobs: int, vllm_kwargs: dict) -> None:
vllm_prompt = _get_prompt(1, "Describe the audio above.", VLLM_PLACEHOLDER)
hf_prompt = _get_prompt(1, "Describe the audio above.", HF_PLACEHOLDER)
run_test(
hf_runner,
vllm_runner,
[(vllm_prompt, hf_prompt, audio.audio_and_sample_rate)],
MODEL_NAME,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
**vllm_kwargs,
)
@pytest.mark.core_model
@pytest.mark.parametrize("dtype", ["half"])
@pytest.mark.parametrize("max_tokens", [128])
@pytest.mark.parametrize("num_logprobs", [5])
@pytest.mark.parametrize("vllm_kwargs", [
pytest.param({}, marks=pytest.mark.cpu_model),
pytest.param(CHUNKED_PREFILL_KWARGS),
])
def test_models_with_multiple_audios(vllm_runner, audio_assets, dtype: str,
max_tokens: int, num_logprobs: int,
vllm_kwargs: dict) -> None:
vllm_prompt = _get_prompt(len(audio_assets),
"Describe each of the audios above.",
VLLM_PLACEHOLDER)
run_multi_audio_test(
vllm_runner,
[(vllm_prompt, [audio.audio_and_sample_rate
for audio in audio_assets])],
MODEL_NAME,
dtype=dtype,
max_tokens=max_tokens,
num_logprobs=num_logprobs,
**vllm_kwargs,
)
@pytest.mark.asyncio
async def test_online_serving(client, audio_assets):
"""Exercises online serving with/without chunked prefill enabled."""
messages = [{
"role":
"user",
"content": [
*[{
"type": "audio_url",
"audio_url": {
"url": audio.url
}
} for audio in audio_assets],
{
"type":
"text",
"text":
f"What's happening in these {len(audio_assets)} audio clips?"
},
],
}]
chat_completion = await client.chat.completions.create(model=MODEL_NAME,
messages=messages,
max_tokens=10)
assert len(chat_completion.choices) == 1
choice = chat_completion.choices[0]
assert choice.finish_reason == "length"