vllm/tests/models/language/pooling/test_classification.py
Harry Mellor d6953beb91
Convert formatting to use ruff instead of yapf + isort (#26247)
Signed-off-by: Harry Mellor <19981378+hmellor@users.noreply.github.com>
2025-10-05 07:06:22 -07:00

56 lines
1.7 KiB
Python

# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project
import pytest
import torch
from transformers import AutoModelForSequenceClassification
from vllm.platforms import current_platform
@pytest.mark.parametrize(
"model",
[
pytest.param(
"jason9693/Qwen2.5-1.5B-apeach",
marks=[
pytest.mark.core_model,
pytest.mark.cpu_model,
pytest.mark.slow_test,
],
),
],
)
@pytest.mark.parametrize("dtype", ["half"] if current_platform.is_rocm() else ["float"])
def test_models(
hf_runner,
vllm_runner,
example_prompts,
model: str,
dtype: str,
monkeypatch,
) -> None:
if current_platform.is_rocm():
# ROCm Triton FA does not currently support sliding window attention
# switch to use ROCm CK FA backend
monkeypatch.setenv("VLLM_USE_TRITON_FLASH_ATTN", "False")
with vllm_runner(model, max_model_len=512, dtype=dtype) as vllm_model:
vllm_outputs = vllm_model.classify(example_prompts)
with hf_runner(
model, dtype=dtype, auto_cls=AutoModelForSequenceClassification
) as hf_model:
hf_outputs = hf_model.classify(example_prompts)
# check logits difference
for hf_output, vllm_output in zip(hf_outputs, vllm_outputs):
hf_output = torch.tensor(hf_output)
vllm_output = torch.tensor(vllm_output)
# the tolerance value of 1e-2 is selected based on the
# half datatype tests in
# tests/models/language/pooling/test_embedding.py
assert torch.allclose(
hf_output, vllm_output, 1e-3 if dtype == "float" else 1e-2
)